Geometry Utilities (mathutils.geometry)¶
The Blender geometry module
-
mathutils.geometry.
area_tri
(v1, v2, v3)¶ Returns the area size of the 2D or 3D triangle defined.
Parameters: - v1 (
mathutils.Vector
) – Point1 - v2 (
mathutils.Vector
) – Point2 - v3 (
mathutils.Vector
) – Point3
Return type: float
- v1 (
-
mathutils.geometry.
barycentric_transform
(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)¶ Return a transformed point, the transformation is defined by 2 triangles.
Parameters: - point (
mathutils.Vector
) – The point to transform. - tri_a1 (
mathutils.Vector
) – source triangle vertex. - tri_a2 (
mathutils.Vector
) – source triangle vertex. - tri_a3 (
mathutils.Vector
) – source triangle vertex. - tri_b1 (
mathutils.Vector
) – target triangle vertex. - tri_b2 (
mathutils.Vector
) – target triangle vertex. - tri_b3 (
mathutils.Vector
) – target triangle vertex.
Returns: The transformed point
Return type: - point (
-
mathutils.geometry.
box_fit_2d
(points)¶ Returns an angle that best fits the points to an axis aligned rectangle
Parameters: points (list) – list of 2d points. Returns: angle Return type: float
-
mathutils.geometry.
box_pack_2d
(boxes)¶ Returns the normal of the 3D tri or quad.
Parameters: boxes (list) – list of boxes, each box is a list where the first 4 items are [x, y, width, height, …] other items are ignored. Returns: the width and height of the packed bounding box Return type: tuple, pair of floats
-
mathutils.geometry.
closest_point_on_tri
(pt, tri_p1, tri_p2, tri_p3)¶ Takes 4 vectors: one is the point and the next 3 define the triangle.
Parameters: - pt (
mathutils.Vector
) – Point - tri_p1 (
mathutils.Vector
) – First point of the triangle - tri_p2 (
mathutils.Vector
) – Second point of the triangle - tri_p3 (
mathutils.Vector
) – Third point of the triangle
Returns: The closest point of the triangle.
Return type: - pt (
-
mathutils.geometry.
convex_hull_2d
(points)¶ Returns a list of indices into the list given
Parameters: points (list) – list of 2d points. Returns: a list of indices Return type: list of ints
-
mathutils.geometry.
delaunay_2d_cdt
(vert_coords, edges, faces, output_type, epsilon)¶
Computes the Constrained Delaunay Triangulation of a set of vertices, with edges and faces that must appear in the triangulation. Some triangles may be eaten away, or combined with other triangles, according to output type. The returned verts may be in a different order from input verts, may be moved slightly, and may be merged with other nearby verts. The three returned orig lists give, for each of verts, edges, and faces, the list of input element indices corresponding to the positionally same output element. For edges, the orig indices start with the input edges and then continue with the edges implied by each of the faces (n of them for an n-gon).
arg vert_coords: Vertex coordinates (2d) type vert_coords: list of mathutils.Vector
arg edges: Edges, as pairs of indices in vert_coords type edges: list of (int, int) arg faces: Faces, each sublist is a face, as indices in vert_coords (CCW oriented) type faces: list of list of int arg output_type: What output looks like. 0 => triangles with convex hull. 1 => triangles inside constraints. 2 => the input constraints, intersected. 3 => like 2 but with extra edges to make valid BMesh faces. type output_type: intn :arg epsilon: For nearness tests; should not be zero type epsilon: float return: Output tuple, (vert_coords, edges, faces, orig_verts, orig_edges, orig_faces) rtype: (list of mathutils.Vector, list of (int, int), list of list of int, list of list of int, list of list of int, list of list of int)
-
mathutils.geometry.
distance_point_to_plane
(pt, plane_co, plane_no)¶ Returns the signed distance between a point and a plane (negative when below the normal).
Parameters: - pt (
mathutils.Vector
) – Point - plane_co (
mathutils.Vector
) – A point on the plane - plane_no (
mathutils.Vector
) – The direction the plane is facing
Return type: float
- pt (
-
mathutils.geometry.
interpolate_bezier
(knot1, handle1, handle2, knot2, resolution)¶ Interpolate a bezier spline segment.
Parameters: - knot1 (
mathutils.Vector
) – First bezier spline point. - handle1 (
mathutils.Vector
) – First bezier spline handle. - handle2 (
mathutils.Vector
) – Second bezier spline handle. - knot2 (
mathutils.Vector
) – Second bezier spline point. - resolution (int) – Number of points to return.
Returns: The interpolated points
Return type: list of
mathutils.Vector
’s- knot1 (
-
mathutils.geometry.
intersect_line_line
(v1, v2, v3, v4)¶ Returns a tuple with the points on each line respectively closest to the other.
Parameters: - v1 (
mathutils.Vector
) – First point of the first line - v2 (
mathutils.Vector
) – Second point of the first line - v3 (
mathutils.Vector
) – First point of the second line - v4 (
mathutils.Vector
) – Second point of the second line
Return type: tuple of
mathutils.Vector
’s- v1 (
-
mathutils.geometry.
intersect_line_line_2d
(lineA_p1, lineA_p2, lineB_p1, lineB_p2)¶ Takes 2 segments (defined by 4 vectors) and returns a vector for their point of intersection or None.
Warning
Despite its name, this function works on segments, and not on lines.
Parameters: - lineA_p1 (
mathutils.Vector
) – First point of the first line - lineA_p2 (
mathutils.Vector
) – Second point of the first line - lineB_p1 (
mathutils.Vector
) – First point of the second line - lineB_p2 (
mathutils.Vector
) – Second point of the second line
Returns: The point of intersection or None when not found
Return type: mathutils.Vector
or None- lineA_p1 (
-
mathutils.geometry.
intersect_line_plane
(line_a, line_b, plane_co, plane_no, no_flip=False)¶ Calculate the intersection between a line (as 2 vectors) and a plane. Returns a vector for the intersection or None.
Parameters: - line_a (
mathutils.Vector
) – First point of the first line - line_b (
mathutils.Vector
) – Second point of the first line - plane_co (
mathutils.Vector
) – A point on the plane - plane_no (
mathutils.Vector
) – The direction the plane is facing
Returns: The point of intersection or None when not found
Return type: mathutils.Vector
or None- line_a (
-
mathutils.geometry.
intersect_line_sphere
(line_a, line_b, sphere_co, sphere_radius, clip=True)¶ Takes a line (as 2 points) and a sphere (as a point and a radius) and returns the intersection
Parameters: - line_a (
mathutils.Vector
) – First point of the line - line_b (
mathutils.Vector
) – Second point of the line - sphere_co (
mathutils.Vector
) – The center of the sphere - sphere_radius (sphere_radius) – Radius of the sphere
Returns: The intersection points as a pair of vectors or None when there is no intersection
Return type: A tuple pair containing
mathutils.Vector
or None- line_a (
-
mathutils.geometry.
intersect_line_sphere_2d
(line_a, line_b, sphere_co, sphere_radius, clip=True)¶ Takes a line (as 2 points) and a sphere (as a point and a radius) and returns the intersection
Parameters: - line_a (
mathutils.Vector
) – First point of the line - line_b (
mathutils.Vector
) – Second point of the line - sphere_co (
mathutils.Vector
) – The center of the sphere - sphere_radius (sphere_radius) – Radius of the sphere
Returns: The intersection points as a pair of vectors or None when there is no intersection
Return type: A tuple pair containing
mathutils.Vector
or None- line_a (
-
mathutils.geometry.
intersect_plane_plane
(plane_a_co, plane_a_no, plane_b_co, plane_b_no)¶ Return the intersection between two planes
Parameters: - plane_a_co (
mathutils.Vector
) – Point on the first plane - plane_a_no (
mathutils.Vector
) – Normal of the first plane - plane_b_co (
mathutils.Vector
) – Point on the second plane - plane_b_no (
mathutils.Vector
) – Normal of the second plane
Returns: The line of the intersection represented as a point and a vector
Return type: tuple pair of
mathutils.Vector
or None if the intersection can’t be calculated- plane_a_co (
-
mathutils.geometry.
intersect_point_line
(pt, line_p1, line_p2)¶ Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.
Parameters: - pt (
mathutils.Vector
) – Point - line_p1 (
mathutils.Vector
) – First point of the line - line_p1 – Second point of the line
Return type: (
mathutils.Vector
, float)- pt (
-
mathutils.geometry.
intersect_point_quad_2d
(pt, quad_p1, quad_p2, quad_p3, quad_p4)¶ Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0. Works only with convex quads without singular edges.
Parameters: - pt (
mathutils.Vector
) – Point - quad_p1 (
mathutils.Vector
) – First point of the quad - quad_p2 (
mathutils.Vector
) – Second point of the quad - quad_p3 (
mathutils.Vector
) – Third point of the quad - quad_p4 (
mathutils.Vector
) – Fourth point of the quad
Return type: int
- pt (
-
mathutils.geometry.
intersect_point_tri
(pt, tri_p1, tri_p2, tri_p3)¶ Takes 4 vectors: one is the point and the next 3 define the triangle. Projects the point onto the triangle plane and checks if it is within the triangle.
Parameters: - pt (
mathutils.Vector
) – Point - tri_p1 (
mathutils.Vector
) – First point of the triangle - tri_p2 (
mathutils.Vector
) – Second point of the triangle - tri_p3 (
mathutils.Vector
) – Third point of the triangle
Returns: Point on the triangles plane or None if its outside the triangle
Return type: mathutils.Vector
or None- pt (
-
mathutils.geometry.
intersect_point_tri_2d
(pt, tri_p1, tri_p2, tri_p3)¶ Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.
Parameters: - pt (
mathutils.Vector
) – Point - tri_p1 (
mathutils.Vector
) – First point of the triangle - tri_p2 (
mathutils.Vector
) – Second point of the triangle - tri_p3 (
mathutils.Vector
) – Third point of the triangle
Return type: int
- pt (
-
mathutils.geometry.
intersect_ray_tri
(v1, v2, v3, ray, orig, clip=True)¶ Returns the intersection between a ray and a triangle, if possible, returns None otherwise.
Parameters: - v1 (
mathutils.Vector
) – Point1 - v2 (
mathutils.Vector
) – Point2 - v3 (
mathutils.Vector
) – Point3 - ray (
mathutils.Vector
) – Direction of the projection - orig (
mathutils.Vector
) – Origin - clip (boolean) – When False, don’t restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.
Returns: The point of intersection or None if no intersection is found
Return type: mathutils.Vector
or None- v1 (
-
mathutils.geometry.
intersect_sphere_sphere_2d
(p_a, radius_a, p_b, radius_b)¶ Returns 2 points on between intersecting circles.
Parameters: - p_a (
mathutils.Vector
) – Center of the first circle - radius_a (float) – Radius of the first circle
- p_b (
mathutils.Vector
) – Center of the second circle - radius_b (float) – Radius of the second circle
Return type: tuple of
mathutils.Vector
’s or None when there is no intersection- p_a (
-
mathutils.geometry.
intersect_tri_tri_2d
(tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)¶ Check if two 2D triangles intersect.
Return type: bool
-
mathutils.geometry.
normal
(vectors)¶ Returns the normal of a 3D polygon.
Parameters: vectors (sequence of 3 or more 3d vector) – Vectors to calculate normals with Return type: mathutils.Vector
-
mathutils.geometry.
points_in_planes
(planes)¶ Returns a list of points inside all planes given and a list of index values for the planes used.
Parameters: planes (list of mathutils.Vector
) – List of planes (4D vectors).Returns: two lists, once containing the vertices inside the planes, another containing the plane indices used Return type: pair of lists
-
mathutils.geometry.
tessellate_polygon
(veclist_list)¶ Takes a list of polylines (each point a pair or triplet of numbers) and returns the point indices for a polyline filled with triangles.
Parameters: veclist_list – list of polylines Return type: list
-
mathutils.geometry.
volume_tetrahedron
(v1, v2, v3, v4)¶ Return the volume formed by a tetrahedron (points can be in any order).
Parameters: - v1 (
mathutils.Vector
) – Point1 - v2 (
mathutils.Vector
) – Point2 - v3 (
mathutils.Vector
) – Point3 - v4 (
mathutils.Vector
) – Point4
Return type: float
- v1 (