Math Types & Utilities (mathutils)¶

```import mathutils

vec = mathutils.Vector((1.0, 2.0, 3.0))

mat_trans = mathutils.Matrix.Translation(vec)

mat = mat_trans * mat_rot
mat.invert()

mat3 = mat.to_3x3()
quat1 = mat.to_quaternion()
quat2 = mat3.to_quaternion()

quat_diff = quat1.rotation_difference(quat2)

print(quat_diff.angle)
```
class mathutils.Color

```import mathutils

# color values are represented as RGB values from 0 - 1, this is blue
col = mathutils.Color((0.0, 0.0, 1.0))

# as well as r/g/b attribute access you can adjust them by h/s/v
col.s *= 0.5

# you can access its components by attribute or index
print("Color R:", col.r)
print("Color G:", col[1])
print("Color B:", col[-1])
print("Color HSV: %.2f, %.2f, %.2f", col[:])

# components of an existing color can be set
col[:] = 0.0, 0.5, 1.0

# components of an existing color can use slice notation to get a tuple
print("Values: %f, %f, %f" % col[:])

# colors can be added and subtracted
col += mathutils.Color((0.25, 0.0, 0.0))

# Color can be multiplied, in this example color is scaled to 0-255
# can printed as integers
print("Color: %d, %d, %d" % (col * 255.0)[:])

# This example prints the color as hexidecimal
print("Hexidecimal: %.2x%.2x%.2x" % (col * 255.0)[:])
```
copy()

Returns a copy of this color.

Returns: A copy of the color. Color

Note

use this to get a copy of a wrapped color with no reference to the original data.

b

Blue color channel.

Type : float
g

Green color channel.

Type : float
h

HSV Hue component in [0, 1].

Type : float
hsv

HSV Values in [0, 1].

Type : float triplet
is_wrapped

True when this object wraps external data (read-only).

Type : boolean
owner

The item this is wrapping or None (read-only).

r

Red color channel.

Type : float
s

HSV Saturation component in [0, 1].

Type : float
v

HSV Value component in [0, 1].

Type : float
class mathutils.Euler

```import mathutils
import math

# create a new euler with default axis rotation order
eul = mathutils.Euler((0.0, math.radians(45.0), 0.0), 'XYZ')

# rotate the euler

# you can access its components by attribute or index
print("Euler X", eul.x)
print("Euler Y", eul[1])
print("Euler Z", eul[-1])

# components of an existing euler can be set
eul[:] = 1.0, 2.0, 3.0

# components of an existing euler can use slice notation to get a tuple
print("Values: %f, %f, %f" % eul[:])

# the order can be set at any time too
eul.order = 'ZYX'

# eulers can be used to rotate vectors
vec = mathutils.Vector((0.0, 0.0, 1.0))
vec.rotate(eul)

# often its useful to convert the euler into a matrix so it can be used as
# transformations with more flexibility
mat_rot = eul.to_matrix()
mat_loc = mathutils.Matrix.Translation((2.0, 3.0, 4.0))
mat = mat_loc * mat_rot.to_4x4()
```
copy()

Returns a copy of this euler.

Returns: A copy of the euler. Euler

Note

use this to get a copy of a wrapped euler with no reference to the original data.

make_compatible(other)

Make this euler compatible with another, so interpolating between them works as intended.

Note

the rotation order is not taken into account for this function.

rotate(other)

Rotates the euler a by another mathutils value.

Parameters: other (Euler, Quaternion or Matrix) – rotation component of mathutils value
rotate_axis(axis, angle)

Rotates the euler a certain amount and returning a unique euler rotation (no 720 degree pitches).

Parameters: axis (string) – single character in [‘X, ‘Y’, ‘Z’]. angle (float) – angle in radians.
to_matrix()

Return a matrix representation of the euler.

Returns: A 3x3 roation matrix representation of the euler. Matrix
to_quaternion()

Return a quaternion representation of the euler.

Returns: Quaternion representation of the euler. Quaternion
zero()

Set all values to zero.

is_wrapped

True when this object wraps external data (read-only).

Type : boolean
order

Euler rotation order.

Type : string in [‘XYZ’, ‘XZY’, ‘YXZ’, ‘YZX’, ‘ZXY’, ‘ZYX’]
owner

The item this is wrapping or None (read-only).

x

Type : float
y

Type : float
z

Type : float
class mathutils.Matrix

```import mathutils
import math

# create a location matrix
mat_loc = mathutils.Matrix.Translation((2.0, 3.0, 4.0))

# create an identitiy matrix
mat_sca = mathutils.Matrix.Scale(0.5, 4, (0.0, 0.0, 1.0))

# create a rotation matrix

# combine transformations
mat_out = mat_loc * mat_rot * mat_sca
print(mat_out)

# extract components back out of the matrix
loc, rot, sca = mat_out.decompose()
print(loc, rot, sca)

# it can also be useful to access components of a matrix directly
mat = mathutils.Matrix()
mat[0][0], mat[1][0], mat[2][0] = 0.0, 1.0, 2.0

mat[0][0:3] = 0.0, 1.0, 2.0

# each item in a matrix is a vector so vector utility functions can be used
mat[0].xyz = 0.0, 1.0, 2.0
```
classmethod Identity(size)

Create an identity matrix.

Parameters: size (int) – The size of the identity matrix to construct [2, 4]. A new identity matrix. Matrix
classmethod OrthoProjection(axis, size)

Create a matrix to represent an orthographic projection.

Parameters: axis (string or Vector) – Can be any of the following: [‘X’, ‘Y’, ‘XY’, ‘XZ’, ‘YZ’], where a single axis is for a 2D matrix. Or a vector for an arbitrary axis size (int) – The size of the projection matrix to construct [2, 4]. A new projection matrix. Matrix
classmethod Rotation(angle, size, axis)

Create a matrix representing a rotation.

Parameters: angle (float) – The angle of rotation desired, in radians. size (int) – The size of the rotation matrix to construct [2, 4]. axis (string or Vector) – a string in [‘X’, ‘Y’, ‘Z’] or a 3D Vector Object (optional when size is 2). A new rotation matrix. Matrix
classmethod Scale(factor, size, axis)

Create a matrix representing a scaling.

Parameters: factor (float) – The factor of scaling to apply. size (int) – The size of the scale matrix to construct [2, 4]. axis (Vector) – Direction to influence scale. (optional). A new scale matrix. Matrix
classmethod Shear(plane, size, factor)

Create a matrix to represent an shear transformation.

Parameters: plane (string) – Can be any of the following: [‘X’, ‘Y’, ‘XY’, ‘XZ’, ‘YZ’], where a single axis is for a 2D matrix only. size (int) – The size of the shear matrix to construct [2, 4]. factor (float or float pair) – The factor of shear to apply. For a 3 or 4 size matrix pass a pair of floats corresponding with the plane axis. A new shear matrix. Matrix
classmethod Translation(vector)

Create a matrix representing a translation.

Parameters: vector (Vector) – The translation vector. An identity matrix with a translation. Matrix

Set the matrix to its adjugate.

Note

When the matrix cant be adjugated a ValueError exception is raised.

Return an adjugated copy of the matrix.

Note

When the matrix cant be adjugated a ValueError exception is raised.

copy()

Returns a copy of this matrix.

Returns: an instance of itself Matrix
decompose()

Return the location, rotaion and scale components of this matrix.

Returns: loc, rot, scale triple. (Vector, Quaternion, Vector)
determinant()

Return the determinant of a matrix.

Returns: Return a the determinant of a matrix. float

identity()

Set the matrix to the identity matrix.

Note

An object with zero location and rotation, a scale of one, will have an identity matrix.

invert()

Set the matrix to its inverse.

Note

When the matrix cant be inverted a ValueError exception is raised.

inverted()

Return an inverted copy of the matrix.

Returns: the inverted matrix. Matrix

Note

When the matrix cant be inverted a ValueError exception is raised.

lerp(other, factor)

Returns the interpolation of two matrices.

Parameters: other (Matrix) – value to interpolate with. factor (float) – The interpolation value in [0.0, 1.0]. The interpolated rotation. Matrix
normalize()

Normalize each of the matrix columns.

normalized()

Return a column normalized matrix

Returns: a column normalized matrix Matrix
resize_4x4()

Resize the matrix to 4x4.

rotate(other)

Rotates the matrix a by another mathutils value.

Parameters: other (Euler, Quaternion or Matrix) – rotation component of mathutils value

Note

If any of the columns are not unit length this may not have desired results.

to_3x3()

Return a 3x3 copy of this matrix.

Returns: a new matrix. Matrix
to_4x4()

Return a 4x4 copy of this matrix.

Returns: a new matrix. Matrix
to_euler(order, euler_compat)

Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).

Parameters: order (string) – Optional rotation order argument in [‘XYZ’, ‘XZY’, ‘YXZ’, ‘YZX’, ‘ZXY’, ‘ZYX’]. euler_compat (Euler) – Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves. Euler representation of the matrix. Euler
to_quaternion()

Return a quaternion representation of the rotation matrix.

Returns: Quaternion representation of the rotation matrix. Quaternion
to_scale()

Return a the scale part of a 3x3 or 4x4 matrix.

Returns: Return a the scale of a matrix. Vector

Note

This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.

to_translation()

Return a the translation part of a 4 row matrix.

Returns: Return a the translation of a matrix. Vector
transpose()

Set the matrix to its transpose.

transposed()

Return a new, transposed matrix.

Returns: a transposed matrix Matrix
zero()

Set all the matrix values to zero.

Returns: an instance of itself Matrix
col

Access the matix by colums, 3x3 and 4x4 only, (read-only).

Type : Matrix Access
is_negative

True if this matrix results in a negative scale, 3x3 and 4x4 only, (read-only).

Type : bool
is_orthogonal

True if this matrix is orthogonal, 3x3 and 4x4 only, (read-only).

Type : bool
is_orthogonal_axis_vectors

True if this matrix has got orthogonal axis vectors, 3x3 and 4x4 only, (read-only).

Type : bool
is_wrapped

True when this object wraps external data (read-only).

Type : boolean
median_scale

The average scale applied to each axis (read-only).

Type : float
owner

The item this is wrapping or None (read-only).

row

Access the matix by rows (default), (read-only).

Type : Matrix Access
translation

The translation component of the matrix.

Type : Vector
class mathutils.Quaternion

```import mathutils
import math

# a new rotation 90 degrees about the Y axis
quat_a = mathutils.Quaternion((0.7071068, 0.0, 0.7071068, 0.0))

# passing values to Quaternion's directly can be confusing so axis, angle
# is supported for initializing too
quat_b = mathutils.Quaternion((0.0, 1.0, 0.0), math.radians(90.0))

print("Check quaternions match", quat_a == quat_b)

# like matrices, quaternions can be multiplied to accumulate rotational values
quat_a = mathutils.Quaternion((0.0, 1.0, 0.0), math.radians(90.0))
quat_b = mathutils.Quaternion((0.0, 0.0, 1.0), math.radians(45.0))
quat_out = quat_a * quat_b

# print the quat, euler degrees for mear mortals and (axis, angle)
print("Final Rotation:")
print(quat_out)
print("%.2f, %.2f, %.2f" % tuple(math.degrees(a) for a in quat_out.to_euler()))
print("(%.2f, %.2f, %.2f), %.2f" % (quat_out.axis[:] +
(math.degrees(quat_out.angle), )))
```
conjugate()

Set the quaternion to its conjugate (negate x, y, z).

conjugated()

Return a new conjugated quaternion.

Returns: a new quaternion. Quaternion
copy()

Returns a copy of this quaternion.

Returns: A copy of the quaternion. Quaternion

Note

use this to get a copy of a wrapped quaternion with no reference to the original data.

cross(other)

Return the cross product of this quaternion and another.

Parameters: other (Quaternion) – The other quaternion to perform the cross product with. The cross product. Quaternion
dot(other)

Return the dot product of this quaternion and another.

Parameters: other (Quaternion) – The other quaternion to perform the dot product with. The dot product. Quaternion
identity()

Set the quaternion to an identity quaternion.

Returns: an instance of itself. Quaternion
invert()

Set the quaternion to its inverse.

inverted()

Return a new, inverted quaternion.

Returns: the inverted value. Quaternion
negate()

Set the quaternion to its negative.

Returns: an instance of itself. Quaternion
normalize()

Normalize the quaternion.

normalized()

Return a new normalized quaternion.

Returns: a normalized copy. Quaternion
rotate(other)

Rotates the quaternion a by another mathutils value.

Parameters: other (Euler, Quaternion or Matrix) – rotation component of mathutils value
rotation_difference(other)

Returns a quaternion representing the rotational difference.

Parameters: other (Quaternion) – second quaternion. the rotational difference between the two quat rotations. Quaternion
slerp(other, factor)

Returns the interpolation of two quaternions.

Parameters: other (Quaternion) – value to interpolate with. factor (float) – The interpolation value in [0.0, 1.0]. The interpolated rotation. Quaternion
to_axis_angle()

Return the axis, angle representation of the quaternion.

Returns: axis, angle. (Vector, float) pair
to_euler(order, euler_compat)

Return Euler representation of the quaternion.

Parameters: order (string) – Optional rotation order argument in [‘XYZ’, ‘XZY’, ‘YXZ’, ‘YZX’, ‘ZXY’, ‘ZYX’]. euler_compat (Euler) – Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves. Euler representation of the quaternion. Euler
to_matrix()

Return a matrix representation of the quaternion.

Returns: A 3x3 rotation matrix representation of the quaternion. Matrix
angle

Angle of the quaternion.

Type : float
axis

Quaternion axis as a vector.

Type : Vector
is_wrapped

True when this object wraps external data (read-only).

Type : boolean
magnitude

Type : float
owner

The item this is wrapping or None (read-only).

w

Quaternion axis value.

Type : float
x

Quaternion axis value.

Type : float
y

Quaternion axis value.

Type : float
z

Quaternion axis value.

Type : float
class mathutils.Vector

```import mathutils

# zero length vector
vec = mathutils.Vector((0.0, 0.0, 1.0))

# unit length vector
vec_a = vec.normalized()

vec_b = mathutils.Vector((0.0, 1.0, 2.0))

vec2d = mathutils.Vector((1.0, 2.0))
vec3d = mathutils.Vector((1.0, 0.0, 0.0))
vec4d = vec_a.to_4d()

# other mathutuls types
quat = mathutils.Quaternion()
matrix = mathutils.Matrix()

# Comparison operators can be done on Vector classes:

# greater and less then test vector length.
vec_a > vec_b
vec_a >= vec_b
vec_a < vec_b
vec_a <= vec_b

# ==, != test vector values e.g. 1,2,3 != 3,2,1 even if they are the same length
vec_a == vec_b
vec_a != vec_b

# Math can be performed on Vector classes
vec_a + vec_b
vec_a - vec_b
vec_a * vec_b
vec_a * 10.0
matrix * vec_a
quat * vec_a
vec_a * vec_b
-vec_a

# You can access a vector object like a sequence
x = vec_a[0]
len(vec)
vec_a[:] = vec_b
vec_a[:] = 1.0, 2.0, 3.0
vec2d[:] = vec3d[:2]

# Vectors support 'swizzle' operations
# See http://en.wikipedia.org/wiki/Swizzling_(computer_graphics)
vec.xyz = vec.zyx
vec.xy = vec4d.zw
vec.xyz = vec4d.wzz
vec4d.wxyz = vec.yxyx
```
classmethod Fill(size, fill=0.0)

Create a vector of length size with all values set to fill.

Parameters: size (int) – The length of the vector to be created. fill (float) – The value used to fill the vector.
classmethod Linspace(start, stop, size)

Create a vector of the specified size which is filled with linearly spaced values between start and stop values.

Parameters: start (int) – The start of the range used to fill the vector. stop (int) – The end of the range used to fill the vector. size (int) – The size of the vector to be created.
classmethod Range(start=0, stop, step=1)

Create a filled with a range of values.

Parameters: start (int) – The start of the range used to fill the vector. stop (int) – The end of the range used to fill the vector. step (int) – The step between successive values in the vector.
classmethod Repeat(vector, size)

Create a vector by repeating the values in vector until the required size is reached.

Parameters: tuple (mathutils.Vector) – The vector to draw values from. size (int) – The size of the vector to be created.
angle(other, fallback)

Return the angle between two vectors.

Parameters: other (Vector) – another vector to compare the angle with fallback (any) – return this value when the angle cant be calculated (zero length vector) angle in radians or fallback when given float

Note

Zero length vectors raise an ValueError.

angle_signed(other, fallback)

Return the signed angle between two 2D vectors (clockwise is positive).

Parameters: other (Vector) – another vector to compare the angle with fallback (any) – return this value when the angle cant be calculated (zero length vector) angle in radians or fallback when given float

Note

Zero length vectors raise an ValueError.

copy()

Returns a copy of this vector.

Returns: A copy of the vector. Vector

Note

use this to get a copy of a wrapped vector with no reference to the original data.

cross(other)

Return the cross product of this vector and another.

Parameters: other (Vector) – The other vector to perform the cross product with. The cross product. Vector

Note

both vectors must be 3D

dot(other)

Return the dot product of this vector and another.

Parameters: other (Vector) – The other vector to perform the dot product with. The dot product. Vector
lerp(other, factor)

Returns the interpolation of two vectors.

Parameters: other (Vector) – value to interpolate with. factor (float) – The interpolation value in [0.0, 1.0]. The interpolated rotation. Vector
negate()

Set all values to their negative.

normalize()

Normalize the vector, making the length of the vector always 1.0.

Warning

Normalizing a vector where all values are zero has no effect.

Note

Normalize works for vectors of all sizes, however 4D Vectors w axis is left untouched.

normalized()

Return a new, normalized vector.

Returns: a normalized copy of the vector Vector
project(other)

Return the projection of this vector onto the other.

Parameters: other (Vector) – second vector. the parallel projection vector Vector
reflect(mirror)

Return the reflection vector from the mirror argument.

Parameters: mirror (Vector) – This vector could be a normal from the reflecting surface. The reflected vector matching the size of this vector. Vector
resize(size=3)

Resize the vector to have size number of elements.

resize_2d()

Resize the vector to 2D (x, y).

resize_3d()

Resize the vector to 3D (x, y, z).

resize_4d()

Resize the vector to 4D (x, y, z, w).

resized(size=3)

Return a resized copy of the vector with size number of elements.

Returns: a new vector Vector
rotate(other)

Return vector by a rotation value.

Parameters: other (Euler, Quaternion or Matrix) – rotation component of mathutils value
rotation_difference(other)

Returns a quaternion representing the rotational difference between this vector and another.

Parameters: other (Vector) – second vector. the rotational difference between the two vectors. Quaternion

Note

2D vectors raise an AttributeError.

to_2d()

Return a 2d copy of the vector.

Returns: a new vector Vector
to_3d()

Return a 3d copy of the vector.

Returns: a new vector Vector
to_4d()

Return a 4d copy of the vector.

Returns: a new vector Vector
to_track_quat(track, up)

Return a quaternion rotation from the vector and the track and up axis.

Parameters: track (string) – Track axis in [‘X’, ‘Y’, ‘Z’, ‘-X’, ‘-Y’, ‘-Z’]. up (string) – Up axis in [‘X’, ‘Y’, ‘Z’]. rotation from the vector and the track and up axis. Quaternion
to_tuple(precision=-1)

Return this vector as a tuple with.

Parameters: precision (int) – The number to round the value to in [-1, 21]. the values of the vector rounded by precision tuple
zero()

Set all values to zero.

is_wrapped

True when this object wraps external data (read-only).

Type : boolean
length

Vector Length.

Type : float
length_squared

Vector length squared (v.dot(v)).

Type : float
magnitude

Vector Length.

Type : float
owner

The item this is wrapping or None (read-only).

w

Vector W axis (4D Vectors only).

Type : float
ww

Undocumented (contribute)

www

Undocumented (contribute)

wwww

Undocumented (contribute)

wwwx

Undocumented (contribute)

wwwy

Undocumented (contribute)

wwwz

Undocumented (contribute)

wwx

Undocumented (contribute)

wwxw

Undocumented (contribute)

wwxx

Undocumented (contribute)

wwxy

Undocumented (contribute)

wwxz

Undocumented (contribute)

wwy

Undocumented (contribute)

wwyw

Undocumented (contribute)

wwyx

Undocumented (contribute)

wwyy

Undocumented (contribute)

wwyz

Undocumented (contribute)

wwz

Undocumented (contribute)

wwzw

Undocumented (contribute)

wwzx

Undocumented (contribute)

wwzy

Undocumented (contribute)

wwzz

Undocumented (contribute)

wx

Undocumented (contribute)

wxw

Undocumented (contribute)

wxww

Undocumented (contribute)

wxwx

Undocumented (contribute)

wxwy

Undocumented (contribute)

wxwz

Undocumented (contribute)

wxx

Undocumented (contribute)

wxxw

Undocumented (contribute)

wxxx

Undocumented (contribute)

wxxy

Undocumented (contribute)

wxxz

Undocumented (contribute)

wxy

Undocumented (contribute)

wxyw

Undocumented (contribute)

wxyx

Undocumented (contribute)

wxyy

Undocumented (contribute)

wxyz

Undocumented (contribute)

wxz

Undocumented (contribute)

wxzw

Undocumented (contribute)

wxzx

Undocumented (contribute)

wxzy

Undocumented (contribute)

wxzz

Undocumented (contribute)

wy

Undocumented (contribute)

wyw

Undocumented (contribute)

wyww

Undocumented (contribute)

wywx

Undocumented (contribute)

wywy

Undocumented (contribute)

wywz

Undocumented (contribute)

wyx

Undocumented (contribute)

wyxw

Undocumented (contribute)

wyxx

Undocumented (contribute)

wyxy

Undocumented (contribute)

wyxz

Undocumented (contribute)

wyy

Undocumented (contribute)

wyyw

Undocumented (contribute)

wyyx

Undocumented (contribute)

wyyy

Undocumented (contribute)

wyyz

Undocumented (contribute)

wyz

Undocumented (contribute)

wyzw

Undocumented (contribute)

wyzx

Undocumented (contribute)

wyzy

Undocumented (contribute)

wyzz

Undocumented (contribute)

wz

Undocumented (contribute)

wzw

Undocumented (contribute)

wzww

Undocumented (contribute)

wzwx

Undocumented (contribute)

wzwy

Undocumented (contribute)

wzwz

Undocumented (contribute)

wzx

Undocumented (contribute)

wzxw

Undocumented (contribute)

wzxx

Undocumented (contribute)

wzxy

Undocumented (contribute)

wzxz

Undocumented (contribute)

wzy

Undocumented (contribute)

wzyw

Undocumented (contribute)

wzyx

Undocumented (contribute)

wzyy

Undocumented (contribute)

wzyz

Undocumented (contribute)

wzz

Undocumented (contribute)

wzzw

Undocumented (contribute)

wzzx

Undocumented (contribute)

wzzy

Undocumented (contribute)

wzzz

Undocumented (contribute)

x

Vector X axis.

Type : float
xw

Undocumented (contribute)

xww

Undocumented (contribute)

xwww

Undocumented (contribute)

xwwx

Undocumented (contribute)

xwwy

Undocumented (contribute)

xwwz

Undocumented (contribute)

xwx

Undocumented (contribute)

xwxw

Undocumented (contribute)

xwxx

Undocumented (contribute)

xwxy

Undocumented (contribute)

xwxz

Undocumented (contribute)

xwy

Undocumented (contribute)

xwyw

Undocumented (contribute)

xwyx

Undocumented (contribute)

xwyy

Undocumented (contribute)

xwyz

Undocumented (contribute)

xwz

Undocumented (contribute)

xwzw

Undocumented (contribute)

xwzx

Undocumented (contribute)

xwzy

Undocumented (contribute)

xwzz

Undocumented (contribute)

xx

Undocumented (contribute)

xxw

Undocumented (contribute)

xxww

Undocumented (contribute)

xxwx

Undocumented (contribute)

xxwy

Undocumented (contribute)

xxwz

Undocumented (contribute)

xxx

Undocumented (contribute)

xxxw

Undocumented (contribute)

xxxx

Undocumented (contribute)

xxxy

Undocumented (contribute)

xxxz

Undocumented (contribute)

xxy

Undocumented (contribute)

xxyw

Undocumented (contribute)

xxyx

Undocumented (contribute)

xxyy

Undocumented (contribute)

xxyz

Undocumented (contribute)

xxz

Undocumented (contribute)

xxzw

Undocumented (contribute)

xxzx

Undocumented (contribute)

xxzy

Undocumented (contribute)

xxzz

Undocumented (contribute)

xy

Undocumented (contribute)

xyw

Undocumented (contribute)

xyww

Undocumented (contribute)

xywx

Undocumented (contribute)

xywy

Undocumented (contribute)

xywz

Undocumented (contribute)

xyx

Undocumented (contribute)

xyxw

Undocumented (contribute)

xyxx

Undocumented (contribute)

xyxy

Undocumented (contribute)

xyxz

Undocumented (contribute)

xyy

Undocumented (contribute)

xyyw

Undocumented (contribute)

xyyx

Undocumented (contribute)

xyyy

Undocumented (contribute)

xyyz

Undocumented (contribute)

xyz

Undocumented (contribute)

xyzw

Undocumented (contribute)

xyzx

Undocumented (contribute)

xyzy

Undocumented (contribute)

xyzz

Undocumented (contribute)

xz

Undocumented (contribute)

xzw

Undocumented (contribute)

xzww

Undocumented (contribute)

xzwx

Undocumented (contribute)

xzwy

Undocumented (contribute)

xzwz

Undocumented (contribute)

xzx

Undocumented (contribute)

xzxw

Undocumented (contribute)

xzxx

Undocumented (contribute)

xzxy

Undocumented (contribute)

xzxz

Undocumented (contribute)

xzy

Undocumented (contribute)

xzyw

Undocumented (contribute)

xzyx

Undocumented (contribute)

xzyy

Undocumented (contribute)

xzyz

Undocumented (contribute)

xzz

Undocumented (contribute)

xzzw

Undocumented (contribute)

xzzx

Undocumented (contribute)

xzzy

Undocumented (contribute)

xzzz

Undocumented (contribute)

y

Vector Y axis.

Type : float
yw

Undocumented (contribute)

yww

Undocumented (contribute)

ywww

Undocumented (contribute)

ywwx

Undocumented (contribute)

ywwy

Undocumented (contribute)

ywwz

Undocumented (contribute)

ywx

Undocumented (contribute)

ywxw

Undocumented (contribute)

ywxx

Undocumented (contribute)

ywxy

Undocumented (contribute)

ywxz

Undocumented (contribute)

ywy

Undocumented (contribute)

ywyw

Undocumented (contribute)

ywyx

Undocumented (contribute)

ywyy

Undocumented (contribute)

ywyz

Undocumented (contribute)

ywz

Undocumented (contribute)

ywzw

Undocumented (contribute)

ywzx

Undocumented (contribute)

ywzy

Undocumented (contribute)

ywzz

Undocumented (contribute)

yx

Undocumented (contribute)

yxw

Undocumented (contribute)

yxww

Undocumented (contribute)

yxwx

Undocumented (contribute)

yxwy

Undocumented (contribute)

yxwz

Undocumented (contribute)

yxx

Undocumented (contribute)

yxxw

Undocumented (contribute)

yxxx

Undocumented (contribute)

yxxy

Undocumented (contribute)

yxxz

Undocumented (contribute)

yxy

Undocumented (contribute)

yxyw

Undocumented (contribute)

yxyx

Undocumented (contribute)

yxyy

Undocumented (contribute)

yxyz

Undocumented (contribute)

yxz

Undocumented (contribute)

yxzw

Undocumented (contribute)

yxzx

Undocumented (contribute)

yxzy

Undocumented (contribute)

yxzz

Undocumented (contribute)

yy

Undocumented (contribute)

yyw

Undocumented (contribute)

yyww

Undocumented (contribute)

yywx

Undocumented (contribute)

yywy

Undocumented (contribute)

yywz

Undocumented (contribute)

yyx

Undocumented (contribute)

yyxw

Undocumented (contribute)

yyxx

Undocumented (contribute)

yyxy

Undocumented (contribute)

yyxz

Undocumented (contribute)

yyy

Undocumented (contribute)

yyyw

Undocumented (contribute)

yyyx

Undocumented (contribute)

yyyy

Undocumented (contribute)

yyyz

Undocumented (contribute)

yyz

Undocumented (contribute)

yyzw

Undocumented (contribute)

yyzx

Undocumented (contribute)

yyzy

Undocumented (contribute)

yyzz

Undocumented (contribute)

yz

Undocumented (contribute)

yzw

Undocumented (contribute)

yzww

Undocumented (contribute)

yzwx

Undocumented (contribute)

yzwy

Undocumented (contribute)

yzwz

Undocumented (contribute)

yzx

Undocumented (contribute)

yzxw

Undocumented (contribute)

yzxx

Undocumented (contribute)

yzxy

Undocumented (contribute)

yzxz

Undocumented (contribute)

yzy

Undocumented (contribute)

yzyw

Undocumented (contribute)

yzyx

Undocumented (contribute)

yzyy

Undocumented (contribute)

yzyz

Undocumented (contribute)

yzz

Undocumented (contribute)

yzzw

Undocumented (contribute)

yzzx

Undocumented (contribute)

yzzy

Undocumented (contribute)

yzzz

Undocumented (contribute)

z

Vector Z axis (3D Vectors only).

Type : float
zw

Undocumented (contribute)

zww

Undocumented (contribute)

zwww

Undocumented (contribute)

zwwx

Undocumented (contribute)

zwwy

Undocumented (contribute)

zwwz

Undocumented (contribute)

zwx

Undocumented (contribute)

zwxw

Undocumented (contribute)

zwxx

Undocumented (contribute)

zwxy

Undocumented (contribute)

zwxz

Undocumented (contribute)

zwy

Undocumented (contribute)

zwyw

Undocumented (contribute)

zwyx

Undocumented (contribute)

zwyy

Undocumented (contribute)

zwyz

Undocumented (contribute)

zwz

Undocumented (contribute)

zwzw

Undocumented (contribute)

zwzx

Undocumented (contribute)

zwzy

Undocumented (contribute)

zwzz

Undocumented (contribute)

zx

Undocumented (contribute)

zxw

Undocumented (contribute)

zxww

Undocumented (contribute)

zxwx

Undocumented (contribute)

zxwy

Undocumented (contribute)

zxwz

Undocumented (contribute)

zxx

Undocumented (contribute)

zxxw

Undocumented (contribute)

zxxx

Undocumented (contribute)

zxxy

Undocumented (contribute)

zxxz

Undocumented (contribute)

zxy

Undocumented (contribute)

zxyw

Undocumented (contribute)

zxyx

Undocumented (contribute)

zxyy

Undocumented (contribute)

zxyz

Undocumented (contribute)

zxz

Undocumented (contribute)

zxzw

Undocumented (contribute)

zxzx

Undocumented (contribute)

zxzy

Undocumented (contribute)

zxzz

Undocumented (contribute)

zy

Undocumented (contribute)

zyw

Undocumented (contribute)

zyww

Undocumented (contribute)

zywx

Undocumented (contribute)

zywy

Undocumented (contribute)

zywz

Undocumented (contribute)

zyx

Undocumented (contribute)

zyxw

Undocumented (contribute)

zyxx

Undocumented (contribute)

zyxy

Undocumented (contribute)

zyxz

Undocumented (contribute)

zyy

Undocumented (contribute)

zyyw

Undocumented (contribute)

zyyx

Undocumented (contribute)

zyyy

Undocumented (contribute)

zyyz

Undocumented (contribute)

zyz

Undocumented (contribute)

zyzw

Undocumented (contribute)

zyzx

Undocumented (contribute)

zyzy

Undocumented (contribute)

zyzz

Undocumented (contribute)

zz

Undocumented (contribute)

zzw

Undocumented (contribute)

zzww

Undocumented (contribute)

zzwx

Undocumented (contribute)

zzwy

Undocumented (contribute)

zzwz

Undocumented (contribute)

zzx

Undocumented (contribute)

zzxw

Undocumented (contribute)

zzxx

Undocumented (contribute)

zzxy

Undocumented (contribute)

zzxz

Undocumented (contribute)

zzy

Undocumented (contribute)

zzyw

Undocumented (contribute)

zzyx

Undocumented (contribute)

zzyy

Undocumented (contribute)

zzyz

Undocumented (contribute)

zzz

Undocumented (contribute)

zzzw

Undocumented (contribute)

zzzx

Undocumented (contribute)

zzzy

Undocumented (contribute)

zzzz

Undocumented (contribute)

Previous topic

Property Definitions (bpy.props)

Next topic

Geometry Utilities (mathutils.geometry)