Generic 3-dimentional kd-tree to perform spatial searches.
import mathutils
# create a kd-tree from a mesh
from bpy import context
obj = context.object
# 3d cursor relative to the object data
co_find = context.scene.cursor_location * obj.matrix_world.inverted()
mesh = obj.data
size = len(mesh.vertices)
kd = mathutils.kdtree.KDTree(size)
for i, v in enumerate(mesh.vertices):
kd.insert(v.co, i)
kd.balance()
# Find the closest point to the center
co_find = (0.0, 0.0, 0.0)
co, index, dist = kd.find(co_find)
print("Close to center:", co, index, dist)
# Find the closest 10 points to the 3d cursor
print("Close 10 points")
for (co, index, dist) in kd.find_n(co_find, 10):
print(" ", co, index, dist)
# Find points within a radius of the 3d cursor
print("Close points within 0.5 distance")
co_find = context.scene.cursor_location
for (co, index, dist) in kd.find_range(co_find, 0.5):
print(" ", co, index, dist)
KdTree(size) -> new kd-tree initialized to hold size items.
Note
KDTree.balance must have been called before using any of the find methods.
Balance the tree.
Find nearest point to co.
Parameters: | co (float triplet) – 3d coordinates. |
---|---|
Returns: | Returns (Vector, index, distance). |
Return type: | tuple |
Find nearest n points to co.
Parameters: |
|
---|---|
Returns: | Returns a list of tuples (Vector, index, distance). |
Return type: | list |
Find all points within radius of co.
Parameters: |
|
---|---|
Returns: | Returns a list of tuples (Vector, index, distance). |
Return type: | list |
Insert a point into the KDTree.
Parameters: |
|
---|