Узел «Текстура Вороног
The Voronoi Texture node evaluates a Worley Noise at the input texture coordinates.
Входы¶
The inputs are dynamic, they become available if needed depending on the node properties.
- Вектор
Texture coordinate to evaluate the noise at; defaults to Generated texture coordinates if the socket is left unconnected.
- W
Texture coordinate to evaluate the noise at.
- Масштаб
Scale of the noise.
- Smoothness
The smoothness of the noise.
- Exponent
Exponent of the Minkowski distance metric.
- Randomness
The randomness of the noise.
Свойства¶
- Dimensions
The dimensions of the space to evaluate the noise in.
- 1D
Evaluate the noise in 1D space at the input W.
- 2D
Evaluate the noise in 2D space at the input Vector. The Z component is ignored.
- 3D
Evaluate the noise in 3D space at the input Vector.
- 4D
Evaluate the noise in 4D space at the input Vector and the input W as the fourth dimension.
Higher dimensions corresponds to higher render time, so lower dimensions should be used unless higher dimensions are necessary.
- Feature
The Voronoi feature that the node will compute and return.
- F1
Compute and return the distance to the closest feature point as well as its position and color.
- F2
Compute and return the distance to the second closest feature point as well as its position and color.
- Smooth F1
Compute and return a smooth version of F1.
- Distance to Edge
Compute and return the distance to the edges of the Voronoi cells.
- N-Sphere Radius
Compute and return the radius of the n-sphere inscribed in the Voronoi cells. In other words, it is half the distance between the closest feature point and the feature point closest to it.
- Distance Metric
The distance metric used to compute the texture.
- Euclidean
Use the Euclidean distance metric.
- Manhattan
Use the Manhattan distance metric.
- Chebychev
Use the Chebychev distance metric.
- Minkowski
Use the Minkowski distance metric. The Minkowski distance is a generalization of the aforementioned metrics with an Exponent as a parameter. Minkowski with an exponent of one is equivalent to the Manhattan distance metric. Minkowski with an exponent of two is equivalent to the Euclidean distance metric. Minkowski with an infinite exponent is equivalent to the Chebychev distance metric.
Выходы¶
- Distance
Distance.
- Цвет
Cell color. The color is arbitrary.
- Position
Position of feature point.
- W
Position of feature point.
- Radius
N-Sphere radius.
Notes¶
In some configurations of the node, especially for low values of Randomness, rendering artifacts may occur. This happens due to the same reasons described in the Notes section in the White Noise Texture page and can be fixed in a similar manner as described there.