Tissue

../../_images/addons_mesh_tissue_cover.jpg

Tissue is a collection of tools that facilitate the use of computational-design techniques inside Blender. It consists of different tools, visible in the right panel. According to the active mode, different tools are displayed:

Activation

  • Open Blender and go to Preferences then the Add-ons tab.

  • Click Mesh then Tissue to enable the script.

Tissue Tools

../../_images/addons_mesh_tissue_tissue-tools.jpg

Generators

Generators are non-destructive functions that generate new objects starting from input objects. They include Tessellate, Dual Mesh (a special Tessellate) and Convert to Curve. For all of them, a Refresh operator can be used in order to reload the changes from the input objects.

Tessellate

The Tessellate tool allows the user to copy a selected object (Component) on the faces of the active object (Base), adapting its bounding box to the shape of quad faces. It is possible to use as input objects Mesh, Curve, Surface and Text and Meta objects. When using Tessellate, two objects must be selected. Once the Tessellate button was pressed, then more options will appear in the tool parameters.

../../_images/addons_mesh_tissue_tessellate-operator.jpg

Later it will be possible to change them, together with more advanced settings from the Object Data Panel of the generated object.

../../_images/addons_mesh_tissue_tessellate-panel.jpg
Use Modifiers

This option is available for both Base and Component objects and allows the use the respective modifiers. If this option is disabled, then only the original object’s data will be used.

Fill Mode

Tessellation strategy used to map the Component’s coordinates on the Base’s faces.

../../_images/addons_mesh_tissue_tessellate-fill-modes.jpg
Tri

This options will automatically triangulate the Base object and will map the component to the triangular faces. The input domain will be considered rectangular, but the target domain will have two vertices coincident.

Quad (default)

This is the default method and will map the Component domain to each quad face of the Base object. If an face has more than 4 vertices, then it will be automatically separated in quad or triangular faces.

../../_images/addons_mesh_tissue_tessellate-quad-mode.jpg
Fan

This option will split every face of the Base object in triangles connecting each side of the face to its center.

../../_images/addons_mesh_tissue_tessellate-fan-mode.jpg
Patch

This option require the use of a Subdivision Surface modifier on the Base object. It is similar to the Quad method, but it will allow to use curved domains, based on the Subdivided patches. If more subdivision surfaces (or Multiresolution modifiers) are used, then only the last one will be used for defining the target patches.

../../_images/addons_mesh_tissue_tessellate-patch-mode.jpg
Frame

Similarly to an Inset Face operator, this option will allow to apply the components along offset faces of a given Thickness.

../../_images/addons_mesh_tissue_tessellate-frame-mode.jpg
Merge

Automatically merge together all the generated components.

Smooth Shading

Automatically sets the shading of the generated geometry as Smooth. If the Component object is already set as Smooth, then this option is not necessary.

Components

Three different method can be used to assign the components.

Object

Repeat the same object on all the target faces.

Collection

Assign the objects contained in a given Collection. The components can be assigned either randomly or according to a Vertex Group.

Materials

Assign the components according to the name of the materials assigned to each face. If for a given material, there is no an object with the same name, then the face is not used.

Watch the Tutorial (it is based on an old version of Tissue, the procedure is slightly different now)

Thickness
Scale Mode
Constant

Generate components with a fixed and uniform thickness in the normal direction.

Relative

Generate components with a thickness proportional to the target face dimension. This will produce components with an aspect ration similar to the original Component object.

Scale

control the scaling factor of the components‘ Thickness

Offset

Allows to control the alignment of the components in relation to the Base object surface.

Components Coordinates

Strategy used to determine the component’s domain for mapping it on the target faces.

../../_images/addons_mesh_tissue_tessellate-component-coordinates.jpg
Bounds (Default)

Automatically defines the domain according the Bounding Box of the component object.

Local

Defines the domain according to the local coordinates of the component object. The face domain is considered from 0 to 1 in both Local X and Local Y directions. This method allows a customization of the mapping strategies, maintaining the result independent from Location/Rotation/Scale of the component object.

Global

Similar to Local, but based on the Global coordinates of the component. This allows to easily produce animations changing the Location/Rotation/Scale of the component.

Watch the Tutorial

Extend (Local and Global coordinates)

Extend the domain of the components with a domain bigger than 0-1.

Clip (Local and Global coordinates)

Truncate the component according to the domain 0-1.

Cyclic (Local and Global coordinates)

Cut and move to the other side the parts of the component that exceed the domain 0-1.

../../_images/addons_mesh_tissue_tessellate-bounds-cyclic.jpg
Weight and Morphing

Combine the Vertex Groups of the base object with the Shape Keys from the component, in order to generate morphing components.

../../_images/addons_mesh_tissue_tessellate-weight-and-morphing.jpg
Map Vertex Groups

Remap each Vertex Group from the base mesh to the generated geometry

Use Shape Keys

Transfer the Shape Keys from the component object to the generated object. If the name of the base’s vertex groups and the Shape Keys match, then they will be automatically assigned in order to control their morphing behavior.

Watch the Tutorial

Iterations

Automatically repeat the tessellation using as base the result of the previous iteration.

../../_images/addons_mesh_tissue_tessellate-iterations.jpg
Repeat

Number of iterations.

Combine iterations

Combine the resulting tessellation with part or all of the previous iteration:

Last

Ignore the previous iterations.

Unused

Combine the tessellation with the faces of the previous iteration that are not generating components.

All

Combine the tessellation with all the faces from the previous iteration.

Dual Mesh

Dual Mesh modifies the selected meshes creating dual meshes. Dual Mesh output is a polygonal mesh derived from the triangular mesh. Quadrangular meshes are automatically converted to triangular before.

../../_images/addons_mesh_tissue_dual-mesh.jpg
Quad Method

Methods for splitting the quads into triangles. (Inherited from the Triangulate Faces tool.)

Polygon Method

Methods for splitting the polygons into triangles. (Inherited from the Triangulate Faces tool.)

Preserve Borders

Prevent alteration of the open boundaries of the mesh.

Convert to Curve

Generate a Curve object from the Loops, Edges or Particles of the active object. This is a non-destructive operation, meaning that in any moment it will be possible to reload the changes from the base object and change the parameters of the conversion. It will be possible to convert specific edges/loops according to different criteria, together with the addition of a pattern effect.

../../_images/addons_mesh_tissue_convert-to-curve-example.jpg

(To Do)

Refresh

Update the active object according to the changes in the base geometries. This operator works on the objects generated through Tessellate and Convert to Curve.

Rotate Faces

Rotate the indexes of the selected faces (in Edit-Mode). This allows to control the rotation of the components of Tessellated objects, when using Default rotation. Once the operator is executed, then the interested Tessellated objects are automatically refreshed.

Convert to Dual Mesh

Destructive version of the Dual-Mesh operator. This directly convert the active object to its Dual-Mesh.

Polyhedra Wireframe

(To Do)

Lattice Along Surface

(To Do)

UV to Mesh

Convert the active UV-map to mesh trying to preserve the original 3D model total surface area.

../../_images/addons_mesh_tissue_uv-to-mesh.jpg

Random Materials

Assign random materials to the face’s of the active mesh object.

Weight to Materials

Distribute existing materials according to the weight of the active vertex group. It is also possible to automatically create new materials.

Tissue Render Animation

(To Do)

Tissue Weight Tools

../../_images/addons_mesh_tissue_weight-tools.jpg

Area

Weight from Faces area (Automatic Bounds, Manual Bounds)

../../_images/addons_mesh_tissue_weight-area.jpg

Curvature

Weight from Curvature (Based on Dirty Color Attributes)

../../_images/addons_mesh_tissue_weight-curvature.jpg

Weight Distance

Generate a vertex group according to the distance from the selected vertices. Different methods can be used: Geodesic, Euclidean or Topology distance.

../../_images/addons_mesh_tissue_weight-distance.jpg

Weight Formula

Weight based on Vertices parameters. Allows to use vertices coordinates and normals direction. Integer and Float sliders can be created in order to find the proper parameters more easily.

../../_images/addons_mesh_tissue_weight-formula.jpg

Weight Laplacian

(To Do)

Harmonic

Harmonic function based on active Weight

../../_images/addons_mesh_tissue_weight-harmonic.jpg

Random

(To Do)

Edges Deformation

Generate a Vertex Group based on Edges Deformation evaluated on the Modifiers result (Deformation Modifiers and Simulations)

../../_images/addons_mesh_tissue_weight-edges-deformation.jpg

Edges Bending

Generate a Vertex Group based on Edges Bending evaluated on the Modifiers result (Deformation Modifiers and Simulations).

../../_images/addons_mesh_tissue_weight-edges-bending.jpg

Streamlines Curves

(To Do)

Contour Curves

Generates isocurves based on Active Weight.

../../_images/addons_mesh_tissue_weight-contour-curves.jpg

Contour Displace

Cut the mesh according to active Weight in a variable number of isocurves and automatically add a Displace Modifier.

../../_images/addons_mesh_tissue_weight-contour-displace.jpg

Contour Mask

Trim the mesh according to active Weight.

../../_images/addons_mesh_tissue_weight-contour-mask.jpg

Reaction Diffusion

Tissue implements the Gray-Scott model for the Reaction-Diffusion simulation. This allows to simulate through the vertex groups the distribution of the two substances that generate the various patterns of many living organisms.

../../_images/addons_mesh_tissue_weight-reaction-diffusion.jpg

See this video for an example of the Reaction-Diffusion simulation with Tissue.

Radom Materials

(To Do)

Weight to Materials

(To Do)

Convert to Colors

Convert To

Value Channel, Red Channel, Green Channel, Blue Channel, False Color

Invert

Invert the values read from vertex weight.

Convert to UV

(To Do)

Tissue Color Tools

../../_images/addons_mesh_tissue_color-tools.jpg

Convert to Weight

Red Channel

Add a vertex group derived to red channel of the active Color Attribute.

Green Channel

Add a vertex group derived to green channel of the active Color Attribute.

Blue Channel

Add a vertex group derived to blue channel of the active Color Attribute.

Value Channel

Add a vertex group derived to value channel of the active Color Attribute.

Invert

Invert the values read from vertex weight.

Example

See this video for an example of the Tissue add-on in action.

Sklic

Category

Mesh

Description

Tools for computational design.

Lokacija

Sidebar ‣ Edit tab

File

mesh_tissue folder

Author

Alessandro Zomparelli (Co-de-iT)

License

GPL

Note

This add-on is bundled with Blender.