Limitations

Eevee’s goal is to be an interactive render engine. Some features may not be there yet or may be impossible to implement into Eevee’s architecture without compromising performance.

Here is a rather exhaustive list of all the limitations you can expect while working with Eevee.

Cameras

  • Seulement les projections perspective et orthographique sont actuellement prises en charge.

Lights

  • Only 128 active lights can be supported by Eevee in a scene.

  • Seulement 8 lumières Sun Shadowed peuvent être prises en charge en même temps.

  • Pour le moment les lumières ne peuvent avoir qu’une couleur et ne prennent pas en charge les arborescences de nœuds de lumière.

Sondes de lumières

  • Eevee only supports up to 128 active Reflection Cubemaps.

  • Eevee only supports up to 64 active Irradiance Volumes.

  • Eevee only supports up to 16 active Reflection Planes inside the view frustum.

Lumière indirecte

  • Les Volumetrics ne reçoivent pas la lumière des Irradiance Volumes mais reçoivent l’éclairage diffus du monde.

  • Eevee does not support « specular to diffuse » light bounces nor « specular to specular » light bounces.

  • Tout l’éclairage spéculaire est désactivé pendant le précalcul.

Shadows (ombres)

  • Only 128 active lights can be supported by Eevee in a scene.

  • Seulement 8 lumières Sun Shadowed peuvent être prises en charge en même temps.

Volumetrics (Volumétriques)

  • Seulement single scattering est pris en charge.

  • Les volumétriques ne sont l’objet d’un rendu que pour les “rayons” de la caméra. Ils n’apparaissent pas dans les réflexions/réfractions et dans les sondes.

  • Les Volumetrics ne reçoivent pas la lumière des Irradiance Volumes mais reçoivent l’éclairage diffus du monde.

  • L’ombrage volumétrique ne fonctionne que sur d’autres volumétriques. Ils ne vont pas projeter des ombres sur des objets solides dans la scène.

  • L’ombrage volumétrique ne fonctionne que pour les volumes se trouvant dans le view frustum.

  • L’éclairage volumétrique ne respecte pas la forme des lumières. Elles sont traitées comme des lumières Point.

Depth Of Field (Profondeur de champ)

  • Les surfaces lissées alpha ne peuvent pas être correctement gérées par le flou de post-traitement, mais le seront correctement par la méthode basée sur les échantillons. Pour cela, vous devez désactiver le post-traitement de la profondeur de champ en définissant Max Size sur 0.

Screen Space Effects (Effets d’espace d’écran)

Eevee is not a ray tracing engine and cannot do ray-triangle intersection. Instead of this, Eevee uses the depth buffer as an approximated scene representation. This reduces the complexity of scene scale effects and enables a higher performance. However, only what is in inside the view can be considered when computing these effects. Also, since it only uses one layer of depth, only the front-most pixel distance is known.

Ces limitations posent quelques problèmes :

  • Les effets d’espace d’écran disparaissent lorsque vous atteignez la bordure de l’écran. Cela peut être partiellement corrigé en utilisant la fonction overscan.

  • Les effets d’espace d’écran manquent d’informations profondes (ou d’épaisseur des objets). C’est pourquoi la plupart des effets ont un paramètre d’épaisseur pour contrôler la façon de considérer les pixels potentiels intersectés.

  • Les surfaces mélangées ne sont pas prises en compte par ces effets. Ils ne font pas partie de la passe de profondeur préalable (depth prepass) et n’apparaissent pas dans le tampon de profondeur.

  • Les objets qui font partie de Holdout Collections ne seront pas rendus avec les effets d’espace d’écran.

Ambient Occlusion (Occlusion ambiante)

  • Les objets sont traités comme infiniment épais, produisant un overshadowing si la Distance est réellement grande.

Screen Space Reflections (Réflexions dans l’espace de l’écran)

  • Seulement un BSDF glossy peut émettre des screen space reflections.

  • Le BSDF évalué est actuellement choisi arbitrairement.

  • Les Screen Space Reflections vont refléter des objets transparents et des objets utilisant la Screen Space Refraction mais sans positionnement précis en raison du tampon de profondeur en une couche.

Screen Space Refraction (Réfraction de l’espace d’écran)

  • Seulement un événement de réfraction est correctement modélisé.

  • Seuls les matériaux opaques et alpha peuvent réfracter.

Subsurface Scattering (Transluminescence)

  • Seulement un BSSRDF peut produire une screen space subsurface scattering.

  • Le BSSRDF évalué est actuellement choisi arbitrairement.

  • Un maximum de 254 surfaces différentes peuvent utiliser la subsurface scattering.

  • Seule la mise à l’échelle est ajustable par pixel. Les rayons RVB individuels sont réglables dans la valeur par défaut du socket.

  • L’éclat d’entrée de chaque surface n’est pas isolé pendant le flou, ce qui entraîne une fuite de lumière d’une surface à l’autre.

Motion Blur (flou de mouvement)

Motion Blur n’est disponible que dans les rendus finaux et n’est pas affiché dans la Vue 3D et donc Viewport Renders.

Materials

Refractions

La réfraction est simulée en échantillonnant la même sonde de réflexion utilisée par les Glossy BSDF, mais en utilisant la direction de vue de la réfraction au lieu de la direction de vue de la réflexion. Seulement le premier événement de réfraction est modélisée correctement. Une approximation du second événement réfraction peut être utilisée pour des objets relativement fins en utilisant la Refraction Depth. L’utilisation de la réfraction de l’espace d’écran réfractera ce qui est visible à l’intérieur de la vue et utilisera la sonde la plus proche s’il n’y a pas de coup.

Les réflexions d’espace d’écran et l’occlusion ambiante ne sont pas compatibles avec la réfraction d’espace d’écran ; ils seront désactivés sur les surfaces qui l’utilisent. Les surfaces qui utilisent la réfraction d’espace d’écran n’apparaîtront pas dans les réflexions d’espace d’écran au bon endroit. Les surfaces qui utilisent la réfraction d’espace d’écran ne projetteront pas l’occlusion ambiante sur d’autres surfaces.

Volume Objects

Les shaders de volume d’objet vont affecter toute la boîte d’encombrement de l’objet. La forme du volume doit être ajustée en utilisant le texturage procédural dans le shader.

Les nœuds Shader

  • All BSDF’s are using approximations to achieve realtime performance so there will always be small differences between Cycles and Eevee.

  • Some utility nodes are not yet compatible with Eevee (e.g. Sky Texture node).

Voir aussi

Pour une liste complète de nœuds non pris en charge, voir Prise en charge des nœuds.

Gestion de la mémoire

In Eevee, GPU Memory management is done by the GPU driver. In theory, only the needed textures and meshes (now referred as « the resources ») for a single draw call (i.e. one object) needs to fit into the GPU memory.

Aussi si la scène est réellement lourde, le pilote va interchanger les choses pour s’assurer que tous les objets sont rendus correctement.

En pratique, l’utilisation de trop de mémoire GPU peut faire planter le pilote GPU, ou tuer l’application. Aussi soyez prudent avec ce que vous demandez.

Il n’existe pas de manière standard pour estimer si les ressources vont tenir dans la mémoire GPU et/ou si le GPU va réussir à en faire le rendu.

Rendu CPU

Being a rasterization engine, Eevee only uses the power of the GPU to render. There is no plan to support CPU (software) rendering as it would be very inefficient. CPU power is still needed to handle high scene complexity as the geometry must be prepared by the CPU before rendering each frame.

Prise en charge de plusieurs GPU

Il n’y a actuellement pas de prise en charge pour des systèmes à GPU multiples.

Rendu sans affichage

There is currently no support for using Eevee on headless systems (i.e. without a Display Manager).