# BMesh Operators (bmesh.ops)#

Most operators take input and return output, they can be chained together to perform useful operations.

## Operator Example#

This script shows how operators can be used to model a link of a chain.

```# This script uses bmesh operators to make 2 links of a chain.

import bpy
import bmesh
import math
import mathutils

# Make a new BMesh
bm = bmesh.new()

# Add a circle XXX, should return all geometry created, not just verts.
bmesh.ops.create_circle(
bm,
cap_ends=False,
segments=8)

# Spin and deal with geometry on side 'a'
edges_start_a = bm.edges[:]
geom_start_a = bm.verts[:] + edges_start_a
ret = bmesh.ops.spin(
bm,
geom=geom_start_a,
steps=8,
axis=(1.0, 0.0, 0.0),
cent=(0.0, 1.0, 0.0))
edges_end_a = [ele for ele in ret["geom_last"]
if isinstance(ele, bmesh.types.BMEdge)]
del ret

# Extrude and create geometry on side 'b'
ret = bmesh.ops.extrude_edge_only(
bm,
edges=edges_start_a)
geom_extrude_mid = ret["geom"]
del ret

# Collect the edges to spin XXX, 'extrude_edge_only' could return this.
verts_extrude_b = [ele for ele in geom_extrude_mid
if isinstance(ele, bmesh.types.BMVert)]
edges_extrude_b = [ele for ele in geom_extrude_mid
if isinstance(ele, bmesh.types.BMEdge) and ele.is_boundary]
bmesh.ops.translate(
bm,
verts=verts_extrude_b,
vec=(0.0, 0.0, 1.0))

# Create the circle on side 'b'
ret = bmesh.ops.spin(
bm,
geom=verts_extrude_b + edges_extrude_b,
steps=8,
axis=(1.0, 0.0, 0.0),
cent=(0.0, 1.0, 1.0))
edges_end_b = [ele for ele in ret["geom_last"]
if isinstance(ele, bmesh.types.BMEdge)]
del ret

# Bridge the resulting edge loops of both spins 'a & b'
bmesh.ops.bridge_loops(
bm,
edges=edges_end_a + edges_end_b)

# Now we have made a links of the chain, make a copy and rotate it
# (so this looks something like a chain)

ret = bmesh.ops.duplicate(
bm,
geom=bm.verts[:] + bm.edges[:] + bm.faces[:])
geom_dupe = ret["geom"]
verts_dupe = [ele for ele in geom_dupe if isinstance(ele, bmesh.types.BMVert)]
del ret

bmesh.ops.translate(
bm,
verts=verts_dupe,
vec=(0.0, 0.0, 2.0))
bmesh.ops.rotate(
bm,
verts=verts_dupe,
cent=(0.0, 1.0, 0.0),

# Done with creating the mesh, simply link it into the scene so we can see it

# Finish up, write the bmesh into a new mesh
me = bpy.data.meshes.new("Mesh")
bm.to_mesh(me)
bm.free()

# Add the mesh to the scene
obj = bpy.data.objects.new("Object", me)

# Select and make active
bpy.context.view_layer.objects.active = obj
obj.select_set(True)
```
bmesh.ops.smooth_vert(bm, verts=[], factor=0, mirror_clip_x=False, mirror_clip_y=False, mirror_clip_z=False, clip_dist=0, use_axis_x=False, use_axis_y=False, use_axis_z=False)#

Vertex Smooth.

Smooths vertices by using a basic vertex averaging scheme.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• verts (list of (`bmesh.types.BMVert`)) – input vertices

• factor (float) – smoothing factor

• mirror_clip_x (bool) – set vertices close to the x axis before the operation to 0

• mirror_clip_y (bool) – set vertices close to the y axis before the operation to 0

• mirror_clip_z (bool) – set vertices close to the z axis before the operation to 0

• clip_dist (float) – clipping threshold for the above three slots

• use_axis_x (bool) – smooth vertices along X axis

• use_axis_y (bool) – smooth vertices along Y axis

• use_axis_z (bool) – smooth vertices along Z axis

bmesh.ops.smooth_laplacian_vert(bm, verts=[], lambda_factor=0, lambda_border=0, use_x=False, use_y=False, use_z=False, preserve_volume=False)#

Vertex Smooth Laplacian.

Smooths vertices by using Laplacian smoothing propose by. Desbrun, et al. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• verts (list of (`bmesh.types.BMVert`)) – input vertices

• lambda_factor (float) – lambda param

• lambda_border (float) – lambda param in border

• use_x (bool) – Smooth object along X axis

• use_y (bool) – Smooth object along Y axis

• use_z (bool) – Smooth object along Z axis

• preserve_volume (bool) – Apply volume preservation after smooth

bmesh.ops.recalc_face_normals(bm, faces=[])#

Right-Hand Faces.

Computes an “outside” normal for the specified input faces.

Parameters:
bmesh.ops.planar_faces(bm, faces=[], iterations=0, factor=0)#

Planar Faces.

Iteratively flatten faces.

Parameters:
Returns:

• `geom`: output slot, computed boundary geometry.

Return type:

dict with string keys

bmesh.ops.region_extend(bm, geom=[], use_contract=False, use_faces=False, use_face_step=False)#

Region Extend.

used to implement the select more/less tools. this puts some geometry surrounding regions of geometry in geom into geom.out.

if use_faces is 0 then geom.out spits out verts and edges, otherwise it spits out faces.

Parameters:
Returns:

• `geom`: output slot, computed boundary geometry.

Return type:

dict with string keys

bmesh.ops.rotate_edges(bm, edges=[], use_ccw=False)#

Edge Rotate.

Rotates edges topologically. Also known as “spin edge” to some people. Simple example: [/] becomes [|] then [].

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.reverse_faces(bm, faces=[], flip_multires=False)#

Reverse Faces.

Reverses the winding (vertex order) of faces. This has the effect of flipping the normal.

Parameters:

Flip the tessellation direction of the selected quads.

Parameters:
bmesh.ops.bisect_edges(bm, edges=[], cuts=0, edge_percents={})#

Edge Bisect.

Splits input edges (but doesn’t do anything else). This creates a 2-valence vert.

Parameters:
Returns:

• `geom_split`: newly created vertices and edges

Return type:

dict with string keys

bmesh.ops.mirror(bm, geom=[], matrix=mathutils.Matrix.Identity(4), merge_dist=0, axis='X', mirror_u=False, mirror_v=False, mirror_udim=False, use_shapekey=False)#

Mirror.

Mirrors geometry along an axis. The resulting geometry is welded on using merge_dist. Pairs of original/mirrored vertices are welded using the merge_dist parameter (which defines the minimum distance for welding to happen).

Parameters:
Returns:

• `geom`: output geometry, mirrored

Return type:

dict with string keys

bmesh.ops.find_doubles(bm, verts=[], keep_verts=[], dist=0)#

Find Doubles.

Takes input verts and find vertices they should weld to. Outputs a mapping slot suitable for use with the weld verts BMOP.

If keep_verts is used, vertices outside that set can only be merged with vertices in that set.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.remove_doubles(bm, verts=[], dist=0)#

Remove Doubles.

Finds groups of vertices closer than dist and merges them together, using the weld verts BMOP.

Parameters:
bmesh.ops.collapse(bm, edges=[], uvs=False)#

Collapse Connected.

Collapses connected vertices

Parameters:
bmesh.ops.pointmerge_facedata(bm, verts=[], vert_snap)#

Face-Data Point Merge.

Merge uv/vcols at a specific vertex.

Parameters:
bmesh.ops.average_vert_facedata(bm, verts=[])#

Average Vertices Face-vert Data.

Merge uv/vcols associated with the input vertices at the bounding box center. (I know, it’s not averaging but the vert_snap_to_bb_center is just too long).

Parameters:
bmesh.ops.pointmerge(bm, verts=[], merge_co=mathutils.Vector())#

Point Merge.

Merge verts together at a point.

Parameters:
bmesh.ops.collapse_uvs(bm, edges=[])#

Collapse Connected UVs.

Collapses connected UV vertices.

Parameters:
bmesh.ops.weld_verts(bm, targetmap={})#

Weld Verts.

Welds verts together (kind-of like remove doubles, merge, etc, all of which use or will use this BMOP). You pass in mappings from vertices to the vertices they weld with.

Parameters:
bmesh.ops.create_vert(bm, co=mathutils.Vector())#

Make Vertex.

Creates a single vertex; this BMOP was necessary for click-create-vertex.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.join_triangles(bm, faces=[], cmp_seam=False, cmp_sharp=False, cmp_uvs=False, cmp_vcols=False, cmp_materials=False, angle_face_threshold=0, angle_shape_threshold=0)#

Join Triangles.

Tries to intelligently join triangles according to angle threshold and delimiters.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input geometry.

• cmp_seam (bool) – Compare seam

• cmp_sharp (bool) – Compare sharp

• cmp_uvs (bool) – Compare UVs

• cmp_vcols (bool) – compare VCols

• cmp_materials (bool) – compare materials

• angle_face_threshold (float) – Undocumented.

• angle_shape_threshold (float) – Undocumented.

Returns:

Return type:

dict with string keys

bmesh.ops.contextual_create(bm, geom=[], mat_nr=0, use_smooth=False)#

Contextual Create.

This is basically F-key, it creates new faces from vertices, makes stuff from edge nets, makes wire edges, etc. It also dissolves faces.

Three verts become a triangle, four become a quad. Two become a wire edge.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.bridge_loops(bm, edges=[], use_pairs=False, use_cyclic=False, use_merge=False, merge_factor=0, twist_offset=0)#

Bridge edge loops with faces.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• edges (list of (`bmesh.types.BMEdge`)) – input edges

• use_pairs (bool) – Undocumented.

• use_cyclic (bool) – Undocumented.

• use_merge (bool) – merge rather than creating faces

• merge_factor (float) – merge factor

• twist_offset (int) – twist offset for closed loops

Returns:

Return type:

dict with string keys

bmesh.ops.grid_fill(bm, edges=[], mat_nr=0, use_smooth=False, use_interp_simple=False)#

Grid Fill.

Create faces defined by 2 disconnected edge loops (which share edges).

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.holes_fill(bm, edges=[], sides=0)#

Fill Holes.

Fill boundary edges with faces, copying surrounding customdata.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.face_attribute_fill(bm, faces=[], use_normals=False, use_data=False)#

Face Attribute Fill.

Fill in faces with data from adjacent faces.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.edgeloop_fill(bm, edges=[], mat_nr=0, use_smooth=False)#

Edge Loop Fill.

Create faces defined by one or more non overlapping edge loops.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.edgenet_fill(bm, edges=[], mat_nr=0, use_smooth=False, sides=0)#

Edge Net Fill.

Create faces defined by enclosed edges.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.edgenet_prepare(bm, edges=[])#

Edge-net Prepare.

Identifies several useful edge loop cases and modifies them so they’ll become a face when edgenet_fill is called. The cases covered are:

• One single loop; an edge is added to connect the ends

• Two loops; two edges are added to connect the endpoints (based on the shortest distance between each endpoint).

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.rotate(bm, cent=mathutils.Vector(), matrix=mathutils.Matrix.Identity(4), verts=[], space=mathutils.Matrix.Identity(4), use_shapekey=False)#

Rotate.

Rotate vertices around a center, using a 3x3 rotation matrix.

Parameters:
bmesh.ops.translate(bm, vec=mathutils.Vector(), space=mathutils.Matrix.Identity(4), verts=[], use_shapekey=False)#

Translate.

Translate vertices by an offset.

Parameters:
bmesh.ops.scale(bm, vec=mathutils.Vector(), space=mathutils.Matrix.Identity(4), verts=[], use_shapekey=False)#

Scale.

Scales vertices by an offset.

Parameters:
bmesh.ops.transform(bm, matrix=mathutils.Matrix.Identity(4), space=mathutils.Matrix.Identity(4), verts=[], use_shapekey=False)#

Transform.

Transforms a set of vertices by a matrix. Multiplies the vertex coordinates with the matrix.

Parameters:

Loads a bmesh into an object/mesh. This is a “private” BMOP.

Parameters:
bmesh.ops.bmesh_to_mesh(bm, mesh, object)#

BMesh to Mesh.

Converts a bmesh to a Mesh. This is reserved for exiting editmode.

Parameters:
bmesh.ops.mesh_to_bmesh(bm, mesh, object, use_shapekey=False)#

Mesh to BMesh.

Load the contents of a mesh into the bmesh. this BMOP is private, it’s reserved exclusively for entering editmode.

Parameters:
bmesh.ops.extrude_discrete_faces(bm, faces=[], use_normal_flip=False, use_select_history=False)#

Individual Face Extrude.

Extrudes faces individually.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.extrude_edge_only(bm, edges=[], use_normal_flip=False, use_select_history=False)#

Extrude Only Edges.

Extrudes Edges into faces, note that this is very simple, there’s no fancy winged extrusion.

Parameters:
Returns:

• `geom`: output geometry

Return type:

dict with string keys

bmesh.ops.extrude_vert_indiv(bm, verts=[], use_select_history=False)#

Individual Vertex Extrude.

Extrudes wire edges from vertices.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.connect_verts(bm, verts=[], faces_exclude=[], check_degenerate=False)#

Connect Verts.

Split faces by adding edges that connect verts.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.connect_verts_concave(bm, faces=[])#

Connect Verts to form Convex Faces.

Ensures all faces are convex faces.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.connect_verts_nonplanar(bm, angle_limit=0, faces=[])#

Connect Verts Across non Planer Faces.

Split faces by connecting edges along non planer faces.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.connect_vert_pair(bm, verts=[], verts_exclude=[], faces_exclude=[])#

Connect Verts.

Split faces by adding edges that connect verts.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.extrude_face_region(bm, geom=[], edges_exclude=set(), use_keep_orig=False, use_normal_flip=False, use_normal_from_adjacent=False, use_dissolve_ortho_edges=False, use_select_history=False)#

Extrude Faces.

Extrude operator (does not transform)

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• geom (list of (`bmesh.types.BMVert`, `bmesh.types.BMEdge`, `bmesh.types.BMFace`)) – edges and faces

• edges_exclude (set of vert/edge/face type) – input edges to explicitly exclude from extrusion

• use_keep_orig (bool) – keep original geometry (requires `geom` to include edges).

• use_normal_flip (bool) – Create faces with reversed direction.

• use_normal_from_adjacent (bool) – Use winding from surrounding faces instead of this region.

• use_dissolve_ortho_edges (bool) – Dissolve edges whose faces form a flat surface.

• use_select_history (bool) – pass to duplicate

Returns:

• `geom`:

Return type:

dict with string keys

bmesh.ops.dissolve_verts(bm, verts=[], use_face_split=False, use_boundary_tear=False)#

Dissolve Verts.

Parameters:
bmesh.ops.dissolve_edges(bm, edges=[], use_verts=False, use_face_split=False)#

Dissolve Edges.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.dissolve_faces(bm, faces=[], use_verts=False)#

Dissolve Faces.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.dissolve_limit(bm, angle_limit=0, use_dissolve_boundaries=False, verts=[], edges=[], delimit=set())#

Limited Dissolve.

Dissolve planar faces and co-linear edges.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.dissolve_degenerate(bm, dist=0, edges=[])#

Degenerate Dissolve.

Dissolve edges with no length, faces with no area.

Parameters:

Triangulate.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input faces

• quad_method (enum in ['BEAUTY', 'FIXED', 'ALTERNATE', 'SHORT_EDGE', 'LONG_EDGE'], default 'BEAUTY') – method for splitting the quads into triangles

• ngon_method (enum in ['BEAUTY', 'EAR_CLIP'], default 'BEAUTY') – method for splitting the polygons into triangles

Returns:

Return type:

dict with string keys

bmesh.ops.unsubdivide(bm, verts=[], iterations=0)#

Un-Subdivide.

Reduce detail in geometry containing grids.

Parameters:
bmesh.ops.subdivide_edges(bm, edges=[], smooth=0, smooth_falloff='SMOOTH', fractal=0, along_normal=0, cuts=0, seed=0, custom_patterns={}, edge_percents={}, quad_corner_type='STRAIGHT_CUT', use_grid_fill=False, use_single_edge=False, use_only_quads=False, use_sphere=False, use_smooth_even=False)#

Subdivide Edges.

Advanced operator for subdividing edges with options for face patterns, smoothing and randomization.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• edges (list of (`bmesh.types.BMEdge`)) – input edges

• smooth (float) – smoothness factor

• smooth_falloff (enum in ['SMOOTH', 'SPHERE', 'ROOT', 'SHARP', 'LINEAR', 'INVERSE_SQUARE'], default 'SMOOTH') – smooth falloff type

• fractal (float) – fractal randomness factor

• along_normal (float) – apply fractal displacement along normal only

• cuts (int) – number of cuts

• seed (int) – seed for the random number generator

• custom_patterns (dict mapping vert/edge/face types to unknown internal data, not compatible with python) – uses custom pointers

• edge_percents (dict mapping vert/edge/face types to float) – Undocumented.

• quad_corner_type (enum in ['STRAIGHT_CUT', 'INNER_VERT', 'PATH', 'FAN'], default 'STRAIGHT_CUT') – quad corner type

• use_grid_fill (bool) – fill in fully-selected faces with a grid

• use_single_edge (bool) – tessellate the case of one edge selected in a quad or triangle

• use_sphere (bool) – for making new primitives only

• use_smooth_even (bool) – maintain even offset when smoothing

Returns:

• `geom_inner`:

• `geom_split`:

• `geom`: contains all output geometry

Return type:

dict with string keys

bmesh.ops.subdivide_edgering(bm, edges=[], interp_mode='LINEAR', smooth=0, cuts=0, profile_shape='SMOOTH', profile_shape_factor=0)#

Subdivide Edge-Ring.

Take an edge-ring, and subdivide with interpolation options.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• edges (list of (`bmesh.types.BMEdge`)) – input vertices

• interp_mode (enum in ['LINEAR', 'PATH', 'SURFACE'], default 'LINEAR') – interpolation method

• smooth (float) – smoothness factor

• cuts (int) – number of cuts

• profile_shape (enum in ['SMOOTH', 'SPHERE', 'ROOT', 'SHARP', 'LINEAR', 'INVERSE_SQUARE'], default 'SMOOTH') – profile shape type

• profile_shape_factor (float) – how much intermediary new edges are shrunk/expanded

Returns:

Return type:

dict with string keys

bmesh.ops.bisect_plane(bm, geom=[], dist=0, plane_co=mathutils.Vector(), plane_no=mathutils.Vector(), use_snap_center=False, clear_outer=False, clear_inner=False)#

Bisect Plane.

Bisects the mesh by a plane (cut the mesh in half).

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.delete(bm, geom=[], context='VERTS')#

Delete Geometry.

Utility operator to delete geometry.

Parameters:
bmesh.ops.duplicate(bm, geom=[], dest=None, use_select_history=False, use_edge_flip_from_face=False)#

Duplicate Geometry.

Utility operator to duplicate geometry, optionally into a destination mesh.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.split(bm, geom=[], dest=None, use_only_faces=False)#

Split Off Geometry.

Disconnect geometry from adjacent edges and faces, optionally into a destination mesh.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.spin(bm, geom=[], cent=mathutils.Vector(), axis=mathutils.Vector(), dvec=mathutils.Vector(), angle=0, space=mathutils.Matrix.Identity(4), steps=0, use_merge=False, use_normal_flip=False, use_duplicate=False)#

Spin.

Extrude or duplicate geometry a number of times, rotating and possibly translating after each step

Parameters:
Returns:

• `geom_last`: result of last step

Return type:

dict with string keys

bmesh.ops.rotate_uvs(bm, faces=[], use_ccw=False)#

UV Rotation.

Cycle the loop UVs

Parameters:
bmesh.ops.reverse_uvs(bm, faces=[])#

UV Reverse.

Reverse the UVs

Parameters:
bmesh.ops.rotate_colors(bm, faces=[], use_ccw=False, color_index=0)#

Color Rotation.

Cycle the loop colors

Parameters:
bmesh.ops.reverse_colors(bm, faces=[], color_index=0)#

Color Reverse

Reverse the loop colors.

Parameters:
bmesh.ops.split_edges(bm, edges=[], verts=[], use_verts=False)#

Edge Split.

Disconnects faces along input edges.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.create_grid(bm, x_segments=0, y_segments=0, size=0, matrix=mathutils.Matrix.Identity(4), calc_uvs=False)#

Create Grid.

Creates a grid with a variable number of subdivisions

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• x_segments (int) – number of x segments

• y_segments (int) – number of y segments

• size (float) – size of the grid

• matrix (`mathutils.Matrix`) – matrix to multiply the new geometry with

• calc_uvs (bool) – calculate default UVs

Returns:

Return type:

dict with string keys

bmesh.ops.create_uvsphere(bm, u_segments=0, v_segments=0, radius=0, matrix=mathutils.Matrix.Identity(4), calc_uvs=False)#

Create UV Sphere.

Creates a grid with a variable number of subdivisions

Parameters:
Returns:

Return type:

dict with string keys

Create Ico-Sphere.

Creates a grid with a variable number of subdivisions

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.create_monkey(bm, matrix=mathutils.Matrix.Identity(4), calc_uvs=False)#

Create Suzanne.

Creates a monkey (standard blender primitive).

Parameters:
Returns:

Return type:

dict with string keys

Create Cone.

Creates a cone with variable depth at both ends

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• cap_ends (bool) – whether or not to fill in the ends with faces

• cap_tris (bool) – fill ends with triangles instead of ngons

• segments (int) – number of vertices in the base circle

• depth (float) – distance between ends

• matrix (`mathutils.Matrix`) – matrix to multiply the new geometry with

• calc_uvs (bool) – calculate default UVs

Returns:

Return type:

dict with string keys

bmesh.ops.create_circle(bm, cap_ends=False, cap_tris=False, segments=0, radius=0, matrix=mathutils.Matrix.Identity(4), calc_uvs=False)#

Creates a Circle.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• cap_ends (bool) – whether or not to fill in the ends with faces

• cap_tris (bool) – fill ends with triangles instead of ngons

• segments (int) – number of vertices in the circle

• matrix (`mathutils.Matrix`) – matrix to multiply the new geometry with

• calc_uvs (bool) – calculate default UVs

Returns:

Return type:

dict with string keys

bmesh.ops.create_cube(bm, size=0, matrix=mathutils.Matrix.Identity(4), calc_uvs=False)#

Create Cube

Creates a cube.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.bevel(bm, geom=[], offset=0, offset_type='OFFSET', profile_type='SUPERELLIPSE', segments=0, profile=0, affect='VERTICES', clamp_overlap=False, material=0, loop_slide=False, mark_seam=False, mark_sharp=False, harden_normals=False, face_strength_mode='NONE', miter_outer='SHARP', miter_inner='SHARP', spread=0, custom_profile=None, vmesh_method='ADJ')#

Bevel.

Bevels edges and vertices

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• geom (list of (`bmesh.types.BMVert`, `bmesh.types.BMEdge`, `bmesh.types.BMFace`)) – input edges and vertices

• offset (float) – amount to offset beveled edge

• offset_type (enum in ['OFFSET', 'WIDTH', 'DEPTH', 'PERCENT', 'ABSOLUTE'], default 'OFFSET') – how to measure the offset

• profile_type (enum in ['SUPERELLIPSE', 'CUSTOM'], default 'SUPERELLIPSE') – The profile type to use for bevel.

• segments (int) – number of segments in bevel

• profile (float) – profile shape, 0->1 (.5=>round)

• affect (enum in ['VERTICES', 'EDGES'], default 'VERTICES') – Whether to bevel vertices or edges.

• clamp_overlap (bool) – do not allow beveled edges/vertices to overlap each other

• material (int) – material for bevel faces, -1 means get from adjacent faces

• loop_slide (bool) – prefer to slide along edges to having even widths

• mark_seam (bool) – extend edge data to allow seams to run across bevels

• mark_sharp (bool) – extend edge data to allow sharp edges to run across bevels

• harden_normals (bool) – harden normals

• face_strength_mode (enum in ['NONE', 'NEW', 'AFFECTED', 'ALL'], default 'NONE') – whether to set face strength, and which faces to set if so

• miter_outer (enum in ['SHARP', 'PATCH', 'ARC'], default 'SHARP') – outer miter kind

• miter_inner (enum in ['SHARP', 'PATCH', 'ARC'], default 'SHARP') – outer miter kind

• spread (float) – amount to offset beveled edge

• custom_profile (`bpy.types.bpy_struct`) – CurveProfile, if None ignored

• vmesh_method (enum in ['ADJ', 'CUTOFF'], default 'ADJ') – The method to use to create meshes at intersections.

Returns:

Return type:

dict with string keys

bmesh.ops.beautify_fill(bm, faces=[], edges=[], use_restrict_tag=False, method='AREA')#

Beautify Fill.

Rotate edges to create more evenly spaced triangles.

Parameters:
Returns:

• `geom`: new flipped faces and edges

Return type:

dict with string keys

bmesh.ops.triangle_fill(bm, use_beauty=False, use_dissolve=False, edges=[], normal=mathutils.Vector())#

Triangle Fill.

Fill edges with triangles

Parameters:
Returns:

• `geom`: new faces and edges

Return type:

dict with string keys

bmesh.ops.solidify(bm, geom=[], thickness=0)#

Solidify.

Turns a mesh into a shell with thickness

Parameters:
Returns:

• `geom`:

Return type:

dict with string keys

bmesh.ops.inset_individual(bm, faces=[], thickness=0, depth=0, use_even_offset=False, use_interpolate=False, use_relative_offset=False)#

Face Inset (Individual).

Insets individual faces.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input faces

• thickness (float) – thickness

• depth (float) – depth

• use_even_offset (bool) – scale the offset to give more even thickness

• use_interpolate (bool) – blend face data across the inset

• use_relative_offset (bool) – scale the offset by surrounding geometry

Returns:

Return type:

dict with string keys

bmesh.ops.inset_region(bm, faces=[], faces_exclude=[], use_boundary=False, use_even_offset=False, use_interpolate=False, use_relative_offset=False, use_edge_rail=False, thickness=0, depth=0, use_outset=False)#

Face Inset (Regions).

Inset or outset face regions.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input faces

• faces_exclude (list of (`bmesh.types.BMFace`)) – input faces to explicitly exclude from inset

• use_boundary (bool) – inset face boundaries

• use_even_offset (bool) – scale the offset to give more even thickness

• use_interpolate (bool) – blend face data across the inset

• use_relative_offset (bool) – scale the offset by surrounding geometry

• use_edge_rail (bool) – inset the region along existing edges

• thickness (float) – thickness

• depth (float) – depth

• use_outset (bool) – outset rather than inset

Returns:

Return type:

dict with string keys

bmesh.ops.offset_edgeloops(bm, edges=[], use_cap_endpoint=False)#

Edge-loop Offset.

Creates edge loops based on simple edge-outset method.

Parameters:
Returns:

Return type:

dict with string keys

bmesh.ops.wireframe(bm, faces=[], thickness=0, offset=0, use_replace=False, use_boundary=False, use_even_offset=False, use_crease=False, crease_weight=0, use_relative_offset=False, material_offset=0)#

Wire Frame.

Makes a wire-frame copy of faces.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input faces

• thickness (float) – thickness

• offset (float) – offset the thickness from the center

• use_replace (bool) – remove original geometry

• use_boundary (bool) – inset face boundaries

• use_even_offset (bool) – scale the offset to give more even thickness

• use_crease (bool) – crease hub edges for improved subdivision surface

• crease_weight (float) – the mean crease weight for resulting edges

• use_relative_offset (bool) – scale the offset by surrounding geometry

• material_offset (int) – offset material index of generated faces

Returns:

Return type:

dict with string keys

bmesh.ops.poke(bm, faces=[], offset=0, center_mode='MEAN_WEIGHTED', use_relative_offset=False)#

Pokes a face.

Splits a face into a triangle fan.

Parameters:
• bm (`bmesh.types.BMesh`) – The bmesh to operate on.

• faces (list of (`bmesh.types.BMFace`)) – input faces

• offset (float) – center vertex offset along normal

• center_mode (enum in ['MEAN_WEIGHTED', 'MEAN', 'BOUNDS'], default 'MEAN_WEIGHTED') – calculation mode for center vertex

• use_relative_offset (bool) – apply offset

Returns:

Return type:

dict with string keys

bmesh.ops.convex_hull(bm, input=[], use_existing_faces=False)#

Convex Hull

Builds a convex hull from the vertices in ‘input’.

If ‘use_existing_faces’ is true, the hull will not output triangles that are covered by a pre-existing face.

All hull vertices, faces, and edges are added to ‘geom.out’. Any input elements that end up inside the hull (i.e. are not used by an output face) are added to the ‘interior_geom’ slot. The ‘unused_geom’ slot will contain all interior geometry that is completely unused. Lastly, ‘holes_geom’ contains edges and faces that were in the input and are part of the hull.

Parameters:
Returns:

• `geom`:

• `geom_interior`:

• `geom_unused`:

• `geom_holes`:

Return type:

dict with string keys

bmesh.ops.symmetrize(bm, input=[], direction='-X', dist=0, use_shapekey=False)#

Symmetrize.

Makes the mesh elements in the “input” slot symmetrical. Unlike normal mirroring, it only copies in one direction, as specified by the “direction” slot. The edges and faces that cross the plane of symmetry are split as needed to enforce symmetry.

All new vertices, edges, and faces are added to the “geom.out” slot.

Parameters:
Returns:

• `geom`:

Return type:

dict with string keys