Open Shading Language¶
Open Shading Language (OSL) is a programmable shading system developed for advanced rendering engines. It allows technical artists and developers to write custom shader code using a C-like scripting language.
In Blender, OSL can be used within Cycles to define custom surface, volume, and displacement shaders. This gives users full control over shading behavior, enabling procedural effects, advanced lighting models, and custom geometry-based material logic that may not be possible with built-in shader nodes alone.
Unlike node-based materials, OSL shaders are authored as text scripts using Blender’s internal Text Editor or loaded from external .osl or .oso files. These scripts are then compiled and used in the Shader Editor through the Script Node.
Suggerimento
OSL is especially useful for generating procedural textures, custom BRDFs, or implementing research prototypes. It also allows sharing shaders across compatible rendering applications that support the OSL standard.
Uso¶
To use Open Shading Language (OSL) in Blender, follow these steps:
Enable OSL Rendering
In the
enable Open Shading Language.Add a Script Node
In the Shader Editor add Script Node then in the node’s properties:
Set the Mode to Internal to use a Blender text data-block, or
Set it to External to load a shader file from disk (either .osl or compiled .oso).
For the internal mode, create a new text data-block in the Text Editor, then write or paste your OSL code there.
Blender will compile the OSL source file automatically. If the source is .osl, it will be compiled into .oso bytecode. Compilation errors will be shown in the system console.
Use Shader Outputs
Once compiled, the node’s outputs will reflect the
output
parameters defined in the OSL code. These outputs can be connected to any part of the material node tree.
Writing Shaders¶
For more details on how to write shaders, see the OSL Documentation.
Here is a simple example:
shader simple_material(
color Diffuse_Color = color(0.6, 0.8, 0.6),
float Noise_Factor = 0.5,
output closure color BSDF = diffuse(N))
{
color material_color = Diffuse_Color * mix(1.0, noise(P * 10.0), Noise_Factor);
BSDF = material_color * diffuse(N);
}
Closures¶
OSL is different from, for example, RSL or GLSL, in that it does not have a light loop. There is no access to lights in the scene, and the material must be built from closures that are implemented in the renderer itself. This is more limited, but also makes it possible for the renderer to do optimizations and ensure all shaders can be importance sampled.
The available closures in Cycles correspond to the shader nodes and their sockets; for more details on what they do and the meaning of the parameters, see the shader nodes manual.
Vedi anche
Documentation on OSL’s built-in closures.
BSDF¶
diffuse(N)
oren_nayar(N, roughness)
diffuse_ramp(N, colors[8])
phong_ramp(N, exponent, colors[8])
diffuse_toon(N, size, smooth)
glossy_toon(N, size, smooth)
translucent(N)
reflection(N)
refraction(N, ior)
transparent()
microfacet_ggx(N, roughness)
microfacet_ggx_aniso(N, T, ax, ay)
microfacet_ggx_refraction(N, roughness, ior)
microfacet_beckmann(N, roughness)
microfacet_beckmann_aniso(N, T, ax, ay)
microfacet_beckmann_refraction(N, roughness, ior)
ashikhmin_shirley(N, T, ax, ay)
ashikhmin_velvet(N, roughness)
Hair¶
hair_reflection(N, roughnessu, roughnessv, T, offset)
hair_transmission(N, roughnessu, roughnessv, T, offset)
principled_hair(N, absorption, roughness, radial_roughness, coat, offset, IOR)
BSSRDF¶
Used to simulate subsurface scattering.
- bssrdf(method, N, radius, albedo)¶
- Parametri:
method (string) –
Rendering method to simulate subsurface scattering.
burley
: An approximation to physically-based volume scattering. This method is less accurate thanrandom_walk
however, in some situations this method will resolve noise faster.random_walk_skin
: Provides accurate results for thin and curved objects. Random Walk uses true volumetric scattering inside the mesh, which means that it works best for closed meshes. Overlapping faces and holes in the mesh can cause problems.random_walk
: Behaves similarly torandom_walk_skin
but modulates the Radius based on the Color, Anisotropy, and IOR. This method thereby attempts to retain greater surface detail and color thanrandom_walk_skin
.
N (vector) – Normal vector of the surface point being shaded.
radius (vector) – Average distance that light scatters below the surface. Higher radius gives a softer appearance, as light bleeds into shadows and through the object. The scattering distance is specified separately for the RGB channels, to render materials such as skin where red light scatters deeper. The X, Y and Z values are mapped to the R, G and B values, respectively.
albedo (color) – Color of the surface, or physically speaking, the probability that light is reflected for each wavelength.
Volume¶
henyey_greenstein(g)
absorption()
Altri¶
emission()
ambient_occlusion()
holdout()
background()
Attributes¶
Geometry attributes can be read through the getattribute()
function.
This includes UV maps, color attributes and any attributes output from geometry nodes.
The following built-in attributes are available through getattribute()
as well.
geom:generated
Automatically generated texture coordinates, from non-deformed mesh.
geom:uv
Default render UV map.
geom:tangent
Default tangent vector along surface, in object space.
geom:undisplaced
Position before displacement, in object space.
geom:dupli_generated
For instances, generated coordinate from instancer object.
geom:dupli_uv
For instances, UV coordinate from instancer object.
geom:trianglevertices
Three vertex coordinates of the triangle.
geom:numpolyvertices
Number of vertices in the polygon (always returns three currently).
geom:polyvertices
Vertex coordinates array of the polygon (always three vertices currently).
geom:name
Name of the object.
geom:is_smooth
Is mesh face smooth or flat shaded.
geom:is_curve
Is object a curve or not.
geom:curve_intercept
0..1 coordinate for point along the curve, from root to tip.
geom:curve_thickness
Thickness of the curve in object space.
geom:curve_length
Length of the curve in object space.
geom:curve_tangent_normal
Tangent Normal of the strand.
geom:is_point
Is point in a point cloud or not.
geom:point_radius
Radius of point in point cloud.
geom:point_position
Center position of point in point cloud.
geom:point_random
Random number, different for every point in point cloud.
path:ray_length
Ray distance since last hit.
object:random
Random number, different for every object instance.
object:index
Object unique instance index.
object:location
Object location.
material:index
Material unique index number.
particle:index
Particle unique instance number.
particle:age
Particle age in frames.
particle:lifetime
Total lifespan of particle in frames.
particle:location
Location of the particle.
particle:size
Size of the particle.
particle:velocity
Velocity of the particle.
particle:angular_velocity
Angular velocity of the particle.
Trace¶
CPU Only
We support the trace(point pos, vector dir, ...)
function,
to trace rays from the OSL shader. The «shade» parameter is not supported currently,
but attributes can be retrieved from the object that was hit using the
getmessage("trace", ..)
function. See the OSL specification for details on how to use this.
This function cannot be used instead of lighting; the main purpose is to allow shaders to «probe» nearby geometry, for example to apply a projected texture that can be blocked by geometry, apply more «wear» to exposed geometry, or make other ambient occlusion-like effects.
Metadata¶
Metadata on parameters controls their display in the user interface. The following metadata is supported:
[[ string label = "My Label" ]]
Name of parameter in the user interface
[[ string widget = "null" ]]
Hide parameter in the user interface.
[[ string widget = "boolean" ]]
and[[ string widget = "checkbox" ]]
Display integer parameter as a boolean checkbox.
Limitations¶
Importante
OSL is not supported with GPU rendering unless using the OptiX backend.
Some OSL features are not available when using the OptiX backend. Examples include:
- Memory usage reductions offered by features like on-demand texture loading and
mip-mapping are not available.
- Texture lookups require OSL to be able to determine a constant image file path for each
texture call.
Some noise functions are not available. Examples include Cell, Simplex, and Gabor.
- The trace function is not functional.
As a result of this, the Ambient Occlusion and Bevel nodes do not work.