Ngôn Ngữ Tô Bóng Mở (Open Shading Language)¶
Duy Cycles (Cycles Only)
It is also possible to create your own nodes using Open Shading Language (OSL). These nodes will only work with the CPU and OptiX rendering backend.
To enable it, select Open Shading Language as the shading system in the render settings.
Ghi chú
Some OSL features are not available when using the OptiX backend. Examples include:
Memory usage reductions offered by features like on-demand texture loading and mip-mapping are not available.
Texture lookups require OSL to be able to determine a constant image file path for each texture call.
Some noise functions are not available. Examples include Cell, Simplex, and Gabor.
The trace function is not functional. As a result of this, the Ambient Occlusion and Bevel nodes do not work.
Nút Tập Lệnh (Script Node)¶
OSL was designed for node-based shading, and each OSL shader corresponds to one node in a node setup. To add an OSL shader, add a script node and link it to a text data-block or an external file. Input and output sockets will be created from the shader parameters on clicking the update button in the Node or the Text editor.
OSL shaders can be linked to the node in a few different ways. With the Internal mode, a text data-block is used to store the OSL shader, and the OSO bytecode is stored in the node itself. This is useful for distributing a blend-file with everything packed into it.
The External mode can be used to specify a .osl
file from a drive,
and this will then be automatically compiled into a .oso
file in the same directory.
It is also possible to specify a path to a .oso
file, which will then be used directly,
with compilation done manually by the user. The third option is to specify just the module name,
which will be looked up in the shader search path.
The shader search path is located in the same place as the scripts or configuration path, under:
- Linux
$HOME/.config/blender/4.3/shaders/
- Cửa Sổ
C:\Users\$user\AppData\Roaming\Blender Foundation\Blender\4.3\shaders\
- macOS
/Users/$USER/Library/Application Support/Blender/4.3/shaders/
Mẹo
For use in production, we suggest to use a node group to wrap shader script nodes, and link that into other blend-files. This makes it easier to make changes to the node afterwards as sockets are added or removed, without having to update the script nodes in all files.
Viết các Bộ Tô Bóng (Writing Shaders)¶
For more details on how to write shaders, see the OSL Documentation.
Here is a simple example:
shader simple_material(
color Diffuse_Color = color(0.6, 0.8, 0.6),
float Noise_Factor = 0.5,
output closure color BSDF = diffuse(N))
{
color material_color = Diffuse_Color * mix(1.0, noise(P * 10.0), Noise_Factor);
BSDF = material_color * diffuse(N);
}
Các Hàm Đóng Kín (Closures)¶
OSL is different from, for example, RSL or GLSL, in that it does not have a light loop. There is no access to lights in the scene, and the material must be built from closures that are implemented in the renderer itself. This is more limited, but also makes it possible for the renderer to do optimizations and ensure all shaders can be importance sampled.
The available closures in Cycles correspond to the shader nodes and their sockets; for more details on what they do and the meaning of the parameters, see the shader nodes manual.
Xem thêm
Documentation on OSL's built-in closures.
Bidirectional Scattering Distribution Function: Hàm Phân Bổ Tán Xạ Hai Chiều¶
diffuse(N)
oren_nayar(N, roughness)
diffuse_ramp(N, colors[8])
phong_ramp(N, exponent, colors[8])
diffuse_toon(N, size, smooth)
glossy_toon(N, size, smooth)
"độ trong mờ"lucent[N])
reflection(N)
refraction(N, ior)
"trong suốt[]"
microfacet_ggx(N, roughness)
microfacet_ggx_aniso(N, T, ax, ay)
microfacet_ggx_refraction(N, roughness, ior)
microfacet_beckmann(N, roughness)
microfacet_beckmann_aniso(N, T, ax, ay)
microfacet_beckmann_refraction(N, roughness, ior)
ashikhmin_shirley(N, T, ax, ay)
ashikhmin_velvet(N, roughness)
Tóc/Lông (Hair)¶
hair_reflection(N, roughnessu, roughnessv, T, offset)
hair_transmission(N, roughnessu, roughnessv, T, offset)
principled_hair(N, absorption, roughness, radial_roughness, coat, offset, IOR)
Bidirectional Scattering Surface Reflectance Distribution Function: Hàm Phân Phối Phản Xạ Bề Mặt Tán Xạ Hai Chiều¶
Used to simulate subsurface scattering.
- bssrdf(method, N, radius, albedo)¶
- Tham số:
method (string) --
Phương pháp kết xuất để mô phỏng tán xạ dưới bề mặt.
burley
: An approximation to physically-based volume scattering. This method is less accurate thanrandom_walk
however, in some situations this method will resolve noise faster.random_walk_skin
: Provides accurate results for thin and curved objects. Random Walk uses true volumetric scattering inside the mesh, which means that it works best for closed meshes. Overlapping faces and holes in the mesh can cause problems.random_walk
: Behaves similarly torandom_walk_skin
but modulates the Radius based on the Color, Anisotropy, and IOR. This method thereby attempts to retain greater surface detail and color thanrandom_walk_skin
.
N (vector) -- Normal vector of the surface point being shaded.
radius (vector) -- Khoảng cách trung bình mà ánh sáng tán xạ ra dưới bề mặt. Bán kính lớn hơn sẽ cho hiện trạng mềm mại hơn vì ánh sáng xâm nhập vào các vùng tối và đi xuyên qua đối tượng. khoảng cách tán xạ sẽ được xác định riêng biệt cho các kênh RGB, để kết xuất nguyên vật liệu giống như da thịt, cái mà ánh sáng đỏ nguồn phân tán sâu hơn. Các giá trị X, Y và Z được là Ánh Xạ sang các giá trị R, G và B trong cặp đôi tương ứng.
albedo (color) -- Màu sắc của bề mặt, hoặc về vật lý mà nói, ánh sáng được phản xạ trên mỗi bước sóng.
Âm Lượng/Thể Tích (Volume)¶
henyey_greenstein(g)
"độ hấp thụ[]"
Cái Khác (Other)¶
"phát xạ[]"
ambient_occlusion()
"giữ chỗ[]"
"nền sau[]"
Thuộc Tính (Attributes)¶
Geometry attributes can be read through the getattribute()
function.
This includes UV maps, color attributes and any attributes output from geometry nodes.
The following built-in attributes are available through getattribute()
as well.
geom:generated
Automatically generated texture coordinates, from undeformed mesh.
geom:uv
Default render UV map.
geom:tangent
Default tangent vector along surface, in object space.
geom:undisplaced
Position before displacement, in object space.
geom:dupli_generated
For instances, generated coordinate from instancer object.
geom:dupli_uv
For instances, UV coordinate from instancer object.
geom:trianglevertices
Three vertex coordinates of the triangle.
geom:numpolyvertices
Number of vertices in the polygon (always returns three currently).
geom:polyvertices
Vertex coordinates array of the polygon (always three vertices currently).
geom:name
Name of the object.
geom:is_smooth
Is mesh face smooth or flat shaded.
geom:is_curve
Is object a curve or not.
geom:curve_intercept
0..1 coordinate for point along the curve, from root to tip.
geom:curve_thickness
Thickness of the curve in object space.
geom:curve_length
Length of the curve in object space.
geom:curve_tangent_normal
Pháp Tiếp Tuyến của sợi.
geom:is_point
Is point in a point cloud or not.
geom:point_radius
Radius of point in point cloud.
geom:point_position
Center position of point in point cloud.
geom:point_random
Random number, different for every point in point cloud.
path:ray_length
Ray distance since last hit.
object:random
Random number, different for every object instance.
object:index
Object unique instance index.
object:location
Vị Trí của Đối Tượng.
material:index
Material unique index number.
particle:index
Particle unique instance number.
particle:age
Tuổi thọ của hạt trong số khung hình.
particle:lifetime
Total lifespan of particle in frames.
particle:location
Vị trí của hạt.
particle:size
Kích thước của hạt.
particle:velocity
Vận tốc của hạt.
particle:angular_velocity
Vận tốc góc của hạt.
Dò Tia (Trace)¶
Duy CPU (CPU Only)
We support the trace(point pos, vector dir, ...)
function,
to trace rays from the OSL shader. The "shade" parameter is not supported currently,
but attributes can be retrieved from the object that was hit using the
getmessage("trace", ..)
function. See the OSL specification for details on how to use this.
This function cannot be used instead of lighting; the main purpose is to allow shaders to "probe" nearby geometry, for example to apply a projected texture that can be blocked by geometry, apply more "wear" to exposed geometry, or make other ambient occlusion-like effects.
Siêu Dữ Liệu (Metadata)¶
Metadata on parameters controls their display in the user interface. The following metadata is supported:
[[ string label = "My Label" ]]
Name of parameter in in the user interface
[[ string widget = "null" ]]
Hide parameter in the user interface.
[[ string widget = "boolean" ]]
and[[ string widget = "checkbox" ]]
Display integer parameter as a boolean checkbox.